Skip to main content
Log in

Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The photocatalytic characteristics of nanostructured TiO2 ultrafine powder with rutile phase produced using the homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 TiO2 powder by flame hydrolysis. The TiO2 powder by the HPPLT showed much higher photoactivity in the removal rate, showing lower pH values in the solution than the P-25 powder when eliminating metal ions such as Pb and Cu from the aqueous metal-EDTA solutions. This can be inferred as the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of an electron-hole pair formed on the surface of the TiO2 particles under UV light irradiation. Also, in the view of the TiO2 particle morphology, compared to the well-dispersed spherical P-25 particles, the agglomerated TiO2 secondary particles by the HPPLT consist of acicular typed primary particles with a thickness in the range of 3–7 nm and the primary particles radialize in all directions, which would be more effective to photocatalytic reactions without the large electron-hole recombination on the surface of the TiO2 particle under UV light irradiation. It can be, therefore, thought that the higher photoactivity of the rutile TiO2 powder by the HPPLT in the aqueous solutions results mainly from having a larger surface area by the acicular shaped primary particles with very thin thickness and radialization in all directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Argaman and C.W. Weddle, AlChE Symp. 70(136), 400 (1972).

    Google Scholar 

  2. L.M. Ottosen, H.K. Hansen, and A. Villumsen, Environ. Sci. Technol. 31, 1711 (1997).

    Google Scholar 

  3. J.D. Way, R.D. Noble, and E.D. Sloam, J. Memb. Sci. 12, 239 (1982).

    Google Scholar 

  4. J.E. Hoffman and I.C. Gundiler, Precious and Rare Earths Technologies (Elsevier, Amsterdam, 1989), p. 391.

    Google Scholar 

  5. L.Y. Chang, Env. Prog. 15, 28 (1996).

    Google Scholar 

  6. A. Fujishima and K. Honda, Nature (London) 238, 37 (1972).

    Google Scholar 

  7. A.L. Pruden and D.F. Ollis, J. Catal. 82, 404 (1983).

    Google Scholar 

  8. M.A. Fox and M.T. Dulay, Chem. Rev. 93, 341 (1993).

    Google Scholar 

  9. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Google Scholar 

  10. S.E. Pratsinis, H. Bai, and P. Biswas, J. Am. Ceram. Soc. 73(7), 2158 (1990).

    Google Scholar 

  11. E. Narita, H. Takeuchi, N. Horiguchi, and T. Okabe, Bull. Chem. Soc. Jpn. 57, 1388 (1984).

    Google Scholar 

  12. E. Reck and M. Richards, Pigment & Resin Technology 28(3), 149 (1999).

    Google Scholar 

  13. A. Tsevis, N. Spanos, P.G. Koutsoukos, Ab J. van der Linde, and J. Lyklema, J. Chem. Soc., Faraday Trans. 94(2), 295 (1998).

    Google Scholar 

  14. J. Augustynski, J. Electrochem. Acta 38, 43 (1993).

    Google Scholar 

  15. B. Ohtani and S.-I. Nishimoto, J. Phys. Chem. 97, 920 (1993).

    Google Scholar 

  16. K.-M. Schindler and M. Kunst, J. Phys. Chem. 94, 8222 (1990).

    Google Scholar 

  17. G.A. Somorjai, Chemistry in Two Dimensions: Surface (Cornel University Press, Ithaca, USA, 1981), p. 551.

    Google Scholar 

  18. A. Mills, R.H. Davies, and D. Worley, Chemical Society Reviews, pp. 417–425 (1993).

  19. A. Mills, S. Morris, and R. Davies, J. Photochem. Photobiol. A: Chem. 71, 285 (1993).

    Google Scholar 

  20. N. Serpone, J. Photochem. Photobiol. A 104, 1 (1997).

    Google Scholar 

  21. S.J. Kim, S.D. Park, Y.H. Jeong, and S. Park, J. Am. Ceram. Soc. 82(4), 927 (1999).

    Google Scholar 

  22. S.D. Park, Y.H. Cho, W.W. Kim, and S.J. Kim, J. Solid State Chem. 146(1), 230 (1999).

    Google Scholar 

  23. S.J. Kim, S.D. Park, K.H. Kim, Y.H. Jeong, and I.H. Kuk, US Patent No. 6001326.

  24. Q. Zhang, L. Gao, and J. Guo, Applied Catalysis B: Environmental 26, 207 (2000).

    Google Scholar 

  25. J.A. Ayres, Decontamination of Nuclear Reactors and Equipment (Ronald Press, New York, 1970), p. 6.

    Google Scholar 

  26. L. Loy and E.E. Wolf, Solar Energy 34(6), 455 (1985).

    Google Scholar 

  27. M.Z. Hoffmann, D.R. Prasad, G. Jones II, and V. Malba, J. Am. Chem. Soc. 105, 6360 (1983).

    Google Scholar 

  28. K.-N.P. Kumar, Scripta Metallurgica et Materialia 32(6), 873 (1995).

    Google Scholar 

  29. K. Tanaka, K. Harada, and S. Murata, Sol. Energy 36(2), 159 (1986).

    Google Scholar 

  30. M.R. Prairie, I.R. Evans, B.M. Stange, and S.L. Martinez, Environ. Sci. Tech. 27, 1776 (1993).

    Google Scholar 

  31. R.R. Bacsa and J. Kiwi, Applied Catalysis B: Environmental 16, 19 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Lee, E., Park, S. et al. Photocatalytic Effects of Rutile Phase TiO2 Ultrafine Powder with High Specific Surface Area Obtained by a Homogeneous Precipitation Process at Low Temperatures. Journal of Sol-Gel Science and Technology 22, 63–74 (2001). https://doi.org/10.1023/A:1011264320138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011264320138

Navigation