Skip to main content
Log in

Constructing the Three-Dimensional Theory of Stability of Deformable Bodies

  • Published:
International Applied Mechanics Aims and scope

Abstract

The construction of the three-dimensional linearized theory of stability of deformable bodies (TLTSDB) is analyzed. Historical aspects, the statement of the problem, basic relations, general results, and some specific problems are outlined

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. D. Akbarov, A. N. Guz', É. A. Movsumov, and S. M. Mustafaev, The Mechanics of Materials with Curved Structures, Vol. 4 of the 12-volume series, A. N. Guz' (ed.), The Mechanics of Composites [in Russian], Naukova Dumka, Kiev (1995).

    Google Scholar 

  2. D. S. Akopyan, A. N. Guz', and A. V. Navoyan, “Constructing a theory of stability of mine openings,” Prikl. Mekh., 18, No. 5, 3–20 (1982).

    Google Scholar 

  3. M. T. Alimzhanov, Equilibrium Stability of Bodies and Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1982).

    Google Scholar 

  4. M. T. Alimzhanov and L. V. Ershov, “Equilibrium stability of bodies and some problems of rock pressure,” in: Problems of the Mechanics of a Deformable Solid [in Russian], Sudostroenie, Leningrad (1970), pp. 47–54.

    Google Scholar 

  5. M. T. Alimzhanov and L. V. Ershov, “On the manifestation of rock pressure near a single permanent deep tunnel,” in: Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1972), pp. 66–76.

    Google Scholar 

  6. A. A. Amandosov and K. Sekeev, “The stability of a circular plate under triaxial compression,” in: Abstracts of Papers Read at the 5th Kazakhstan. Interuniv. Conf. [in Russian], Part 2, Nauka, Alma-Ata (1974), pp. 87–89.

    Google Scholar 

  7. A. A. Amandosov and A. S. Sulbanbekov, “The influence of transversal pressure on the stability of a strip,” in: Abstracts of Papers Read at the 5th Kazakhstan. Interuniv. Conf. [in Russian], Nauka, Alma-Ata (1974), pp. 91–93.

    Google Scholar 

  8. L. I. Balabukh and M. G. Yakovenko, “The equilibrium bifurcation equations for an isotropic body in rates of change in Lagrange coordinates,” Prikl. Mat. Mekh., 38, No. 4, 693–703 (1974).

    Google Scholar 

  9. V. L. Biderman, “Anent the effect of transversal hydrostatic pressure on the stability of rods,” Inzh. Zh. Mekh. Tv. Tela, No. 4, 192–193 (1968).

  10. V. L. Biderman, “Anent the effect of hydrostatic pressure on stability,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 4, 164–165 (1974).

  11. K. B. Bitsenko and R. Grammel', Engineering Dynamics [in Russian], Vol. 1 of the two-volume series, Gostekhizdat, Moscow (1950).

    Google Scholar 

  12. V. V. Bolotin, “Issues of the general theory of elastic stability,” Prikl. Mat. Mekh., 20, No. 5, 561–577 (1956).

    Google Scholar 

  13. V. V. Bolotin, Nonconservative Problems of the Theory of Elastic Stability [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  14. V. V. Bolotin, “Variational principles of the theory of elastic stability,” in: Problems of the Mechanics of a Deformable Solid [in Russian], Leningrad (1970), pp. 83–88.

  15. G. I. Bykovtsev and D. D. Ivlev, The Theory of Plasticity [in Russian], Dal'nauka, Vladivostok (1998).

    Google Scholar 

  16. K. F. Voitsekhovskaya, “Equilibrium stability of rods from the viewpoint of the mathematical theory of elasticity,” Dokl. Akad. Nauk, 119, No. 5, 903–906 (1958).

    Google Scholar 

  17. K. F. Voitsekhovskaya, “Stability of cylindrical shells from the viewpoint of the mathematical theory of elasticity,” Dokl. Akad. Nauk, 123, No. 4, 623–626 (1958).

    Google Scholar 

  18. L. A. Galin, Contact Problems of the Theory of Elasticity [in Russian], Fizmatgiz, Moscow (1953).

    Google Scholar 

  19. A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics [Russian translation], Mir, Moscow (1965).

    Google Scholar 

  20. A. N. Guz', “Stability analysis of elastic systems using the three-dimensional linearized equations of the theory of elasticity,” Prikl. Mekh., 3, No. 2, 20–29 (1967).

    Google Scholar 

  21. A. N. Guz', “Stability of orthotropic bodies,” Prikl. Mekh., 3, No. 5, 40–51 (1967).

    Google Scholar 

  22. A. N. Guz', “General solutions of the three-dimensional linearized equations of the theory of elastic stability,” Dop. Akad. Nauk Ukr. SSR, Ser. A, No. 1, 56–60 (1967).

  23. A. N. Guz', “The accuracy of the Kirchhoff–Love hypothesis in determining critical forces in the theory of elastic stability,” Dokl. Akad. Nauk, 179, No. 3, 552–554 (1968).

    Google Scholar 

  24. A. N. Guz', “Stability of three-dimensional elastic bodies,” Prikl. Mat. Mekh., 32, No. 5, 930–935 (1968).

    Google Scholar 

  25. A. N. Guz', “General solutions of the three-dimensional stability equations for elastoplastic bodies,” Dop. Akad. Nauk Ukr. SSR, Ser. A, No. 4, 34–37 (1968).

  26. A. N. Guz', “Stability of a strip,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 6, 111–113 (1969).

  27. A. N. Guz', “Stability of elastoplastic bodies,” Prikl. Mekh., 5, No. 8, 11–19 (1969).

    Google Scholar 

  28. A. N. Guz', “A condition for applicability of the Euler method to the stability analysis of deformation of nonlinearly elastic bodies under finite subcritical strains,” Dokl. Akad. Nauk, 194, No. 3, 38–40 (1970).

    Google Scholar 

  29. A. N. Guz', “Bifurcation of the equilibrium state of a three-dimensional elastic isotropic body under large subcritical strains,” Prikl. Mat. Mekh., 34, No. 6, 1113–1125 (1970).

    Google Scholar 

  30. A. N. Guz', “The three-dimensional theory of stability of deformation of materials with rheological properties,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, 104–107 (1970).

  31. A. N. Guz', “Some issues of stability of a nonlinear elastic body under finite and small subcritical strains,” Prikl. Mekh., 6, No. 4, 52–58 (1970).

    Google Scholar 

  32. A. N. Guz', Stability of Three-Dimensional Deformable Bodies [in Russian], Naukova Dumka, Kiev (1971).

    Google Scholar 

  33. A. N. Guz', “Spatial problems on bifurcation of the equilibrium of a nonlinearly elastic incompressible body under finite homogeneous strains,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 6, 72–80 (1971).

  34. A. N. Guz', “Variational principles of the three-dimensional theory of elastic stability,” Dop. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 1013–1016 (1971).

  35. A. N. Guz', “The three-dimensional theory of elastic stability under finite subcritical strains,” Prikl. Mekh., 8, No. 12, 15–44 (1972).

    Google Scholar 

  36. A. N. Guz', “Variational principles of three-dimensional linearized problems of the theory of elasticity under large initial strains,” in: Continuum Mechanics and Related Analysis Problems [in Russian], Nauka, Moscow (1972), pp. 169–174.

    Google Scholar 

  37. A. N. Guz', “Stability problems in the mechanics of rocks,” in: Problems of Rock Mechanics [in Russian], Nauka, Alma-Ata (1972), pp. 27–35.

    Google Scholar 

  38. A. N. Guz', Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  39. A. N. Guz', “Analogies between linearized and linear problems of the theory of elasticity,” Dokl. Akad. Nauk, 212, No. 5, 1089–1091 (1973).

    Google Scholar 

  40. A. N. Guz', “The variational principles of three-dimensional stability problems for inelastic bodies,” Dop. Akad. Nauk Ukr. SSR, Ser. A, No. 11, 1008–1012 (1973).

  41. A. N. Guz', “Inversion of the relations of the yielding theory for hardened bodies,” Prikl. Mat. Mekh., 40, No. 4, 716–720 (1976).

    Google Scholar 

  42. A. N. Guz', “Stability of elastic bodies under triaxial compression,” Prikl. Mekh., 12, No. 6, 3–27 (1976).

    Google Scholar 

  43. A. N. Guz', Fundamentals of the Theory of Stability of Mine Openings [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  44. A. N. Guz', “Stability of elastic compressible bodies under triaxial compression,” Prikl. Mat. Mekh., 42, No. 5, 936–945 (1978).

    Google Scholar 

  45. A. N. Guz', Stability of Elastic Bodies under Triaxial Compression [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  46. A. N. Guz', “Stability of elastic bodies under omnidirectional uniform compression,” Dokl. Akad. Nauk, 244, No. 2, 304–307 (1979).

    Google Scholar 

  47. A. N. Guz', “Stability of elastic incompressible bodies under omnidirectional uniform compression,” Prikl. Mekh., 15, No. 1, 3–12 (1979).

    Google Scholar 

  48. A. N. Guz', “The variational principles of the three-dimensional theory of stability of deformable bodies under follower loads,” Dokl. Akad. Nauk, 246, No. 6, 1314–1316 (1979).

    Google Scholar 

  49. A. N. Guz', “Stability problems for mine openings,” Dokl. Akad. Nauk, 253, No. 3, 1314–1316 (1980).

    Google Scholar 

  50. A. N. Guz', “Complex potentials of a plane linearized problem of elastic theory (compressible bodies),” Prikl. Mekh., 16, No. 5, 72–83 (1980).

    Google Scholar 

  51. A. N. Guz', “Complex potentials of a plane linearized problem of elastic theory (incompressible bodies),” Prikl. Mekh., 16, No. 6, 64–70 (1980).

    Google Scholar 

  52. A. N. Guz', “One fracture criterion for solids compressed along cracks (a plane problem),” Dokl. Akad. Nauk, 259, No. 6, 1315–1318 (1981).

    Google Scholar 

  53. A. N. Guz', The Mechanics of Brittle Fracture of Initially Stressed Materials [in Russian], Naukova Dumka, Kiev (1983).

    Google Scholar 

  54. A. N. Guz', “The possibility of generalizing the nonlinear theory of small strains,” Prikl. Mekh., 20, No. 1, 3–13 (1984).

    Google Scholar 

  55. A. N. Guz', Elastic Waves in Initially Stressed Bodies, Vol. 1, General Issues [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  56. A. N. Guz', Elastic Waves in Initially Stressed Bodies, Vol. 2, Propagation Laws [in Russian], Naukova Dumka, Kiev (1986).

    Google Scholar 

  57. A. N. Guz', Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Vyshcha Shkola, Kiev (1986).

    Google Scholar 

  58. A. N. Guz', The Fracture Mechanics of Composites under Compression [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  59. A. N. Guz', “The exact solution of a plane problem on fracture of a material compressed along uniplanar cracks,” Dokl. Akad. Nauk, 310, No. 3, 563–566 (1990).

    Google Scholar 

  60. A. N. Guz', Brittle Fracture of Initially Stresses Materials, Vol. 2 of the four-volume five-book series, A. N. Guz' (ed), Nonclassical Problems of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  61. A. N. Guz', “Exact solutions of mixed plane problems of the linearized mechanics of deformable bodies (review),” Prikl. Mekh., 34, No. 3, 3–36 (1998).

    Google Scholar 

  62. A. N. Guz', Construction of the Theory of Stability of Mine Openings [in Russian], On the Occasion of the 70th Anniversary of Prof. L. V. Ershov, Moscow (2000).

  63. A. N. Guz' and I. Yu. Babich, The Three-Dimensional Theory of Stability of Rods, Plates, and Shells [in Russian], Vyshcha Shkola, Kiev (1980).

    Google Scholar 

  64. A. N. Guz' and I. Yu. Babich, The Three-Dimensional Theory of Stability of Deformable Bodies, Vol. 4 of the six-volume series, A. N Guz' (ed.), Spatial Problems of the Theory of Elasticity and Plasticity [in Russian], Naukova Dumka, Kiev (1985).

    Google Scholar 

  65. A. N. Guz' and S. Yu. Babich, “Plane dynamic problems for elastic initially stressed bodies,” Dokl. Akad. Nauk, 261, No. 2, 313–316 (1981).

    Google Scholar 

  66. A. N. Guz', S. Yu. Babich, and V. B. Rudnitskii, Contact Interaction of Elastic Initially Stressed Bodies [in Ukrainian], Vyshcha Shkola, Kiev (1995).

    Google Scholar 

  67. A. N. Guz' and L. V. Deriglazov, “Stability of an anisotropic rock mass near two parallel mine tunnels,” Dokl. Akad. Nauk, 325, No. 3, 450–454 (1992).

    Google Scholar 

  68. A. N. Guz', M. S. Dyshel', and V. M. Nazarenko, Fracture and Stability of Cracked Materials, Vol. 4, Book 1 of the four-volume five-book series, A. N. Guz' (ed.), Nonclassical Problems of Fracture Mechanics [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  69. A. N. Guz', A. P. Zhuk, and F. G. Makhort, Waves in an Initially Stressed Layer [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  70. A. N. Guz' and G. G. Kuliev, “The theory of stability of drilled wells,” Prikl. Mekh., 19, No. 3, 10–17 (1983).

    Google Scholar 

  71. A. N. Guz', F. G. Makhort, and O. I. Gushcha, An Introduction to Acoustoelasticity [in Russian], Naukova Dumka, Kiev (1977).

    Google Scholar 

  72. A. N. Guz', F. G. Makhort, O. I. Gushcha, and V. K. Lebedev, Fundamentals of an Ultrasonic Nondestructive Method for Determination of Stresses in Solids [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  73. A. N. Guz' and A. N. Sporykhin, “The three-dimensional theory of inelastic stability: general issues,” Prikl. Mekh., 18, No. 7, 3–28 (1982).

    Google Scholar 

  74. A. N. Guz' and A. N. Sporykhin, “The three-dimensional theory of inelastic stability: specific results,” Prikl. Mekh., 18, No. 8, 3–27 (1982).

    Google Scholar 

  75. A. N. Guz' and Vik. N. Chekhov, “The linearized theory of folding in the earth's crust,” Prikl. Mekh., 11, No. 1, 3–14 (1975).

    Google Scholar 

  76. A. N. Guz', N. A. Shul'ga, I. Yu. Babich et al., Dynamics and Stability of Materials, Vol. 2 of the 12-volume series, A. N. Guz' (ed.), The Mechanics of Composites [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  77. G. Gerard and A. C. Gilbert, “A critical strain approach to creep buckling of plates and shells,” J. Aero/Space Sci., 25, No. 7, 429–434, 458 (1958).

    Google Scholar 

  78. Zh. S. Erzhanov and I. A. Garagash, “Linearized equations of equilibrium and stability of a strip under triaxial compression,” Izv. Kazakh. SSR, Ser. Fiz.-Mat., No. 5, 29–36 (1975).

  79. Zh. S. Erzhanov and A. K. Egorov, The Theory of Rock Folding (a Mathematical Description) [in Russian], Nauka, Alma-Ata (1968).

    Google Scholar 

  80. Zh. S. Erzhanov, A. K. Egorov, I. A. Garagash et al., The Theory of Folding of the Earth's Crust [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  81. L. V. Ershov, “Formulation of stability problems for mine openings,” Dokl. Akad. Nauk, 143, No. 2, 305–307 (1962).

    Google Scholar 

  82. L. V. Ershov, “Manifestation of rock pressure in mine tunnels,” Dokl. Akad. Nauk, 145, No. 2, 298–300 (1962).

    Google Scholar 

  83. L. V. Ershov and D. D. Ivlev, “Stability of a strip under compression,” Dokl. Akad. Nauk, 138, No. 5, 1047–1049 (1961).

    Google Scholar 

  84. L. M. Zubov, “The variational principles of the nonlinear theory of elasticity (the case of superposition of small and finite strains),” Prikl. Mat. Mekh., 35, No. 5, 848–852 (1971).

    Google Scholar 

  85. A. A. Il'yushin, “Deformation of a viscoplastic body,” Uchen. Zap. Moskovskogo Univ., No. 39, 3–47 (1940).

    Google Scholar 

  86. A. Yu. Ishlinskii, “Stability of viscoplastic flow of a strip and a circular rod,” Prikl. Mat. Mekh., 7, No. 2, 413–421 (1943).

    Google Scholar 

  87. A. Yu. Ishlinskii, “Consideration of the stability of the equilibrium of elastic bodies from the viewpoint of the mathematical theory of elasticity,” Ukr. Mat. Zh., 6, No. 2, 140–146 (1954).

    Google Scholar 

  88. L. M. Kachanov, Creep Theory [in Russian], Fizmatgiz, Moscow (1960).

    Google Scholar 

  89. L. M. Kachanov, Fundamentals of the Theory of Plasticity [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  90. V. D. Klyushnikov, “Bifurcation of deformation and the concept of continuous loading,” Izv. Akad. Nauk SSSR, Mekh. Tv. Tela, No. 5, 16–20 (1972).

  91. V. D. Klyushnikov, “Development of the theory of stability of structures beyond the elastic limit and a criterion of deformation bifurcation,” Prikl. Mekh., 11, No. 6, 3–11 (1975).

    Google Scholar 

  92. V. D. Klyushnikov, Stability of Elastoplastic Systems [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  93. V. D. Klyushnikov, Lectures on the Theory of Stability of Deformable Systems [in Russian], Izd. Moskovskogo Univ., Moscow (1986).

    Google Scholar 

  94. G. G. Kuliev, Fracture and Stability of Three-Dimensional Cracked Bodies and Some Related Problems of Rock and Oil Mechanics [in Russian], Élm, Baku (1983).

    Google Scholar 

  95. I. D. Legenya, “Stability of a compressed plate in view of angular displacements,” Dokl. Akad. Nauk, 149, No. 4, 802–805 (1963).

    Google Scholar 

  96. L. S. Leibenzon, “Application of harmonic functions in stability analysis of spherical and cylindrical shells,” in: Collection of Works [in Russian], Vol. 1, Moscow (1951), pp. 110–121.

    Google Scholar 

  97. S. G. Lekhnitskii, The Theory of Elasticity of an Anisotropic Body [in Russian], Nauka, Moscow (1977).

    Google Scholar 

  98. A. I. Lurie, “Bifurcation of the equilibrium of an ideally elastic body,” Prikl. Mat. Mekh., 30, No. 4, 718–731 (1966).

    Google Scholar 

  99. A. I. Lurie, The Theory of Elasticity [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  100. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], fifth edition, Nauka, Moscow (1966).

    Google Scholar 

  101. V. V. Novozhilov, Fundamentals of the Nonlinear Theory of Elasticity [in Russian], Gostekhizdat, Moscow–Leningrad (1948).

    Google Scholar 

  102. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  103. N. J. Hoff, “Buckling and stability,” J. Royal Aeronaut. Soc., 58 (1954).

  104. F. R. Shanley, “Inelastic column theory,” J. Aeronaut. Sci., 14, No. 5, 261–267 (1947).

    Google Scholar 

  105. S. D. Akbarov, T. Sisman, and N. Yahnioglu, “On the fracture of the unidirectional composites in compression,” Int. Eng. Sci., 35, No. 12, 1115–1136 (1997).

    Google Scholar 

  106. S. D. Akbarov, A. Cilli, and A. N. Guz, “The theoretical strength limit in compression of viscoelastic layered composite materials,” Composites, Part B, Engineering, 30, 465–472 (1999).

    Google Scholar 

  107. Z. P. Bazant, “Correlation study of formulation of incremental deformation and stability of continuous bodies,” Trans. ASME, Ser. E, No. 4, 344–358 (1971).

  108. M. F. Beatty, “Stability of hyperelastic bodies subject to hydrostatic loading,” Int. J. Nonlinear Mech., 5, No. 3, 376–387 (1970).

    Google Scholar 

  109. C. B. Biezeno and H. Hencky, “On the general theory of elastic stability,” K. Akad. Wet. Amsterdam Proc., 31, 569–592 (1929); 32, 444–456 (1930).

    Google Scholar 

  110. M. A. Biot, “Sur la stabilité de l'equilibrie élastique. Equations de 1'élasticite d'un milieu soumis a tension initiale,” Ann. Soc. Sci. Sect. B, 54, Pt. 1, 91–109 (1934).

    Google Scholar 

  111. M. A. Biot, “Nonlinear theory of elasticity and the linearized case for a body under initial stresses,” Phil. Mag., Ser. 7, 27, 468–489 (1939).

    Google Scholar 

  112. M. A. Biot, “Folding instability of a layered viscoelastic medium under compression,” Proc. Roy. Soc. London, Ser. A, 242, 1231 (1957).

    Google Scholar 

  113. M. A. Biot, “Folding of a layered viscoelastic medium derived from an exact stability theory of continuum under initial stress,” Appl. Math. Quart., 17, No. 2 (1959).

  114. M. A. Biot, “The influence of gravity on the folding of a layered viscoelastic medium under compression,” J. Franklin Inst., 267, 211–228 (1959).

    Google Scholar 

  115. M. A. Biot, “On the instability and folding deformation of a layered viscoelastic medium in compression,” Trans. ASME, E 26, No. 3 (1959).

  116. M. A. Biot, “Stability problems of inhomogeneous viscoelastic media,” in: Nonhomogeneity in Elasticity and Plasticity, Pergamon Press, London–New York–Paris–Los Angeles (1959).

    Google Scholar 

  117. M. A. Biot, “Instability of a continuously inhomogeneous viscoelastic half-space under initial stress,” J. Franklin Inst., 270, No. 3 (1960).

  118. M. A. Biot, “Theory of folding of stratified viscoelastic media and its implications in tectonics and orogenesis,” Bull. Geol. Soc. Am., 72, 1595–1620 (1961).

    Google Scholar 

  119. M. A. Biot, “Internal buckling under initial stress in finite elasticity,” Proc. Roy. Soc., A, 273, 306–329 (1963).

    Google Scholar 

  120. M. A. Biot, Internal Instability in Finite Elasticity under Initial Stress, Proc. Roy. Soc., 273 (1963).

  121. M. A. Biot, Surface Instability in Finite Anisotropic Elasticity under Initial Stress, Proc. Roy. Soc., 273 (1963).

  122. M. A. Biot, “Continuum dynamics of elastic plates and multilayered solids under initial stress,” J. Math. Mech., 12, No. 6 (1963).

  123. M. A. Biot, “Theory of stability of multilayered continua in finite anisotropic elasticity,” J. Franklin Inst., 276, 128–153 (1963).

    Google Scholar 

  124. M. A. Biot, “Stability of multilayered continua including the effect of gravity and viscoelasticity,” J. Franklin Inst., 276, 231–252 (1963).

    Google Scholar 

  125. M. A. Biot, “Theory of stability of periodic multilayered continua,” Quart. J. Mech. Appl. Math., 17, No. 2 (1964).

    Google Scholar 

  126. M. A. Biot, “Continuum theory of stability of an embedded layer in finite elastic under initial stress,” Quart. J. Mech. Appl. Math., 17, No. 1 (1964).

  127. M. A. Biot, “Theory of viscous buckling of multilayered fluids undergoing finite strain,” Physics Fluids, 7, 855–859 (1964).

    Google Scholar 

  128. M. A. Biot, “Theory of internal buckling of a confined multilayered structure,” Bull. Geol. Soc. Am., 15, 563–568 (1964).

    Google Scholar 

  129. M. A. Biot, Mechanics of Incremental Deformations, John Wiley and Sons, New York (1965).

    Google Scholar 

  130. M. A. Biot, “Further development of the theory of internal buckling of multilayers,” Bull. Geol. Soc. Am., 75, 833–840 (1965).

    Google Scholar 

  131. M. A. Biot, “Theory of similar folding of the first and second kind,” Bull. Geol. Soc. Am., 76, 251–258 (1965).

    Google Scholar 

  132. M. A. Biot, “Theory of viscous buckling and gravity instability of multilayers with large deformations,” Bull. Geol. Soc. Am., 76, 371–378 (1965).

    Google Scholar 

  133. M. A. Biot, “Internal instability of anisotropic viscous and viscoelastic media under initial stress,” J. Franklin Inst., 279, 65–82 (1965).

    Google Scholar 

  134. M. A. Biot, “Three-dimensional gravity instability derived from two-dimensional solutions,” Geophysics, 31, 153–166 (1966).

    Google Scholar 

  135. M. A. Biot, “Fundamental skin effect in anisotropic solid mechanics,” Inter. J. Solid. Struct., 2, 645–663 (1966).

    Google Scholar 

  136. M. A. Biot, “Rheological stability with couple stress and its application to geological folding,” Proc. Roy. Soc., 296, 1455 (1967).

    Google Scholar 

  137. M. A. Biot and H. Ode, “Theory of gravity instability with variable overburden and compaction,” Geophysics, 30, 213–227 (1965).

    Google Scholar 

  138. I. N. Distefano and I. I. Sackman, “On the asymptotic stability of nonlinear hereditary phenomenon,” Quart. Appl. Math., 24, No. 2, 133–141 (1966).

    Google Scholar 

  139. A. E. Green, R. S. Riviin, and R. T. Shield, “General theory of small elastic deformations superposed on finite elastic deformations,” Proc. Roy. Soc., Ser A, 211, No. 1104, 128–154 (1952).

    Google Scholar 

  140. A. E. Green and W. Zerna, Theoretical Elasticity, Univ. Press, Oxford (1954).

    Google Scholar 

  141. A. N. Guz', “On the problems of stability of deformable systems under tracking loads,” in: Theory of Shells, North-Holland Publ. Co. (1980), pp. 327–328.

  142. A. N. Guz', “On the theory of stability of underground mine working,” in: Mechanics of Joined and Faulted Rock, A. A. Balkema, Rotterdam (1990), pp. 803–807.

  143. A. N. Guz', “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 1. Problem statement and general relationships,” Int. Appl. Mech., 34, No. 12, 1175–1186 (1998).

    Google Scholar 

  144. A. N. Guz', “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 2. Cracks of normal separation (mode 1),” Int. Appl. Mech., 35, No. 1, 1–12 (1999).

    Google Scholar 

  145. A. N. Guz', “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 3. Transverse-shear (mode II) and longitudinal-shear (mode III) cracks,” Int. Appl. Mech., 35, No. 2, 109–119 (1999).

    Google Scholar 

  146. A. N. Guz', “Dynamic problems of the mechanics of the brittle fracture of materials with initial stresses for moving cracks. 4. Wedge problems,” Int. Appl. Mech., 35, No. 3, 225–232 (1999).

    Google Scholar 

  147. A. N. Guz', Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).

    Google Scholar 

  148. A. N. Guz', “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).

    Google Scholar 

  149. A. N. Guz' and I. Yu. Babich, “Three-dimensional stability problems of composite materials and composite construction components,” Rozpr. Inz., 27, No. 4, 613–631 (1979).

    Google Scholar 

  150. A. N Guz' and I. A. Guz', “The stability of the interface between two bodies under compression along interface cracks. 1. Exact solutions for the case of unequal roots,” Int. Appl. Mech., 36, No. 4, 482–491 (2000).

    Google Scholar 

  151. A. N. Guz' and I. A. Guz', “The stability of the interface between two bodies under compression along interface cracks. 2. Exact solutions for the case of equal roots,” Int. Appl. Mech., 36, No. 5, 615–622 (2000).

    Google Scholar 

  152. A. N. Guz' and I. A. Guz', “The stability of the interface between two bodies under compression along interface cracks. 3. Exact solutions for the combined case of equal and unequal roots,” Int. Appl. Mech., 36, No. 6, 759–768 (2000).

    Google Scholar 

  153. R. Hill, “On uniqueness and stability in the theory of finite elastic strain,” J. Mech. Phys. Solids, 5, No. 4, 13–21 (1957).

    Google Scholar 

  154. R. Hill, “A general theory of uniqueness and stability of elastoplastic solids,” J. Mech. Phys. Solids, 6, No. 3, 236–249 (1958).

    Google Scholar 

  155. F. John, “Plane strain problems for a perfectly elastic material of harmonic type,” Com. Pure Appl. Math., 13, No. 2, 239–296 (1960).

    Google Scholar 

  156. R. Kappus, “Zur Elastizitätstheorie endlicher Verschiebungen,” ZAMM, 19, No. 5, 271–285 (1939).

    Google Scholar 

  157. R. Kappus, “Zur Elastizitätstheorie endlicher Verschiebungen,” ZAMM, 19, No. 6, 344–361 (1939).

    Google Scholar 

  158. A. D. Kerr, “On the instability of elastic solids,” in: Proc. 4th U.S. Nat. Congr. Appl. Mech. (1962), pp. 647–656.

  159. A. D. Kerr and S. Tang, “The effect of lateral hydrostatic pressure on the instability of elastic solids, particularly beams and plates,” Trans. ASME, J. Appl. Mech., 33, No. 3, 617–627 (1966).

    Google Scholar 

  160. A. D. Kerr and S. Tang, “Instability of rectangular elastic solid,” Acta Mech., 4, No. 1, 43–63 (1967).

    Google Scholar 

  161. “Micromechanics of composite materials: focus on Ukrainian research,” Appl. Mech. Reviews, Special Issue, 45, No. 2, 13–101 (1992).

  162. H. Neuber, “Die Grundgleichungen der elastischen Stabilität in allgemeinen Koordinaten und ihre Integration,” ZAMM, 23, No. 6, 63–82 (1943).

    Google Scholar 

  163. H. Neuber, “Theorie der elastischen Stabilität bei nichtlinearer Vorverfomung,” Acta Mech., 1, No. 3, 112–143 (1965).

    Google Scholar 

  164. J. L. Nowinski, “On the elastic stability of thick columns,” Acta Mech., 7/4, 279–286 (1969).

    Google Scholar 

  165. C. E. Pearson, “General theory of elastic stability,” Quart. Appl. Math., 14, No. 2, 133–145 (1956).

    Google Scholar 

  166. I. P. Peterson, “Axially loaded column subject to lateral pressure,” AIAA J., 1, No. 6, 1458–1468 (1963).

    Google Scholar 

  167. W. Prager, “The general variational principle of the theory of structural stability,” Quart. Appl. Math., 4, No. 3, 231–235 (1946).

    Google Scholar 

  168. R. V. Southwell, “On the general theory of elastic stability,” Phil. Trans. Roy. Soc. London, Ser. A, 213, 187–244 (1913).

    Google Scholar 

  169. F. Tonti, “Variational principles in elastics,” Mechanica, 2, No, 4, 124–138 (1967).

    Google Scholar 

  170. E. Trefftz, “Ñber die Ableitung der Stabilitätskriterien des elastischen Gleichgewichts aus Elastizitätstheorie der endlichen Deformation,” In: Proc 3rd Inter. Congr. Mech. (Stockholm, 1930), 3, 103–110 (1931).

    Google Scholar 

  171. E. Trefftz, “Zur Theorie der stabilitat des elastischen Gleichgewichts,” ZAMM, 12, No. 2, 160–165 (1933).

    Google Scholar 

  172. Z. Wesolowski, Zagadnienia Dynamiczne Nieliniowej Teorii Sprezystosci, PWN, Warsaw (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guz, A.N. Constructing the Three-Dimensional Theory of Stability of Deformable Bodies. International Applied Mechanics 37, 1–37 (2001). https://doi.org/10.1023/A:1011337729312

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011337729312

Keywords

Navigation