Skip to main content
Log in

Materials and Process Design through Mechanochemical Routes

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Mechanochemical Processing (MCP) is the term applied to the powder metallurgy process in which chemical reactions and phase transformations take place due to the application of mechanical energy. Mechanical alloying (MA) is a powder-processing technique involving deformation, cold welding, fracturing, and rewelding of powder particles in a ball mill. The technique of MCP has had a long history and the materials produced this way have already found a number of potential technological applications, e.g., in areas such as hydrogen storage materials, heaters, gas absorbers, fertilizers, catalysts, cosmetics, and waste management. Mechanical alloying has become an established commercial technique to produce oxide dispersion strengthened nickel- and iron-based superalloys. The present paper briefly discusses the basic mechanisms of formation of phases by the techniques of MA and MCP; the variety of possible technological applications of mechanically alloyed or mechanochemically processed products are highlighted. The main focus of this paper is on exploring the feasibility of these processing techniques to produce novel advanced materials and their comparison with competing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Suryanarayana (ed.), Non-Equilibrium Processing of Materials (Pergamon, Oxford, UK, 1999).

    Google Scholar 

  2. J. S. Benjamin, Metal Powder Rep. 45, 122 (1990).

    Google Scholar 

  3. E. Arzt and L. Schultz (ed.), New Materials by Mechanical Alloying Techniques (DGM Informationgesellschaft, Oberursel, Germany, 1989).

    Google Scholar 

  4. A. H. Clauer and J. J. deBarbadillo (ed.), Solid State Powder Processing (TMS, Warrendale, Pennsylvania, 1990).

    Google Scholar 

  5. F. H. Froes and J. J. deBarbadillo (ed.), Structural Applications of Mechanical Alloying (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  6. P. H. Shingu (ed.), Mechanical Alloying (TransTech Publications, Aedermannsdorf, Switzerland; Mater. Sci. Forum, pp. 88–90, 1992).

  7. J. J. deBarbadillo, F. H. Froes, and R. Schwarz, Mechanical Alloying for Structural Applications (ASM International, Materials Park, OH, 1993).

    Google Scholar 

  8. M. O. Lai and L. Lu, Mechanical Alloying (Kluwer Acad., Boston, Massachusetts, 1998).

    Google Scholar 

  9. C. Suryanarayana, Progr. Mater. Sci., p. 46 (2000).

  10. C. Suryanarayana, Bibliography on Mechanical Alloying and Milling (Cambridge International Science Publishing, Cambridge, UK, 1995).

    Google Scholar 

  11. M. Carry, Phil. Mag. 34, 470 (1894).

    Google Scholar 

  12. E. G. Avvakumov, Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, 1986).

    Google Scholar 

  13. P. A. Tiessen, K. Meyer, and G. Heinicke, Grundlagen der Tribochemie (Akademie-Verlag, Berlin, 1966); G. Heinicke, Tribochemistry (Akademie-Verlag, Berlin, 1984).

    Google Scholar 

  14. V. V. Boldyrev, Siberian J. Chem. 5, 4 (1991).

    Google Scholar 

  15. E. Gutman, Mechanochemistry of Materials (Cambridge International Sci., Cambridge, UK, 1997).

    Google Scholar 

  16. E. Ivanov, J. Mater. Synthesis Process. 1, 405 (1993).

    Google Scholar 

  17. P. G. McCormick, Mater. Trans. Jpn Inst. Metals 36, 161 (1995).

    Google Scholar 

  18. P. G. McCormick, in Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, Chap. 160 K. A. Gschneidner, Jr. and L. Eyring, eds. (1997), pp. 47–81.

  19. J. S. Benjamin, Metall. Trans. 1, 2943 (1970).

    Google Scholar 

  20. C. Suryanarayana and F. H. Froes, J. Mater. Res. 5, 1880 (1990).

    Google Scholar 

  21. E. Ivanov, Mater. Sci. Forum 88–90, 475 (1992).

    Google Scholar 

  22. C. Suryanarayana, in ASM Handbook, Vol. 7 (Powder Metal Technologies and Applications, International, Materials Park, Ohio, 1998), pp. 80–90.

    Google Scholar 

  23. R. B. Schwarz, R. R. Petrich, and C. K. Saw, J. Non-Cryst. Solids 76, 281 (1985).

    Google Scholar 

  24. T. Klassen, U. Herr, and R. S. Averback, Acta Mater. 45, 2921 (1997).

    Google Scholar 

  25. C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, Appl. Phys. Lett. 43, 1017 (1983).

    Google Scholar 

  26. A. Inoue, in Non-Equilibrium Processing of Materials, C. Suryanarayana, ed. (Pergamon, Oxford, UK, 1999), pp. 375–415.

    Google Scholar 

  27. M. Seidel, J. Eckert, and L. Schultz, J. Appl. Phys. 77, 5446 (1995).

    Google Scholar 

  28. S. Ashley, Mech. Eng. 120, 72 (1998).

    Google Scholar 

  29. V. Boldyrev, J. Chim. Phys. 83, 821 (1986).

    Google Scholar 

  30. P. Baláz, Extractive Metallurgy of Activated Minerals (Elsevier, Amsterdam, 2000).

    Google Scholar 

  31. C. C. Koch, Nanostruct. Mater. 2, 109 (1993); Nanostruct. Mater. 9, 13 (1997).

    Google Scholar 

  32. C. Suryanarayana, J. Singh, and F. H. Froes (eds.), Processing and Properties of Nanocrystalline Materials (TMS, Warrendale, Pennsylvania, 1995).

    Google Scholar 

  33. R. S. Mishra, S. L. Semiatin, C. Suryanarayana, N. N. Thadhani, and J. C. Lowe (eds.), Ultrafine Grained Materials (TMS, Warendale, Pennsylvania, 2000).

    Google Scholar 

  34. C. Suryanarayana, Intern. Mater. Rev. 40, 41 (1995).

    Google Scholar 

  35. T. Tsuzuki and P. G. McCormick, Nanostruct. Mater. 12, 75 (1999).

    Google Scholar 

  36. V. M. Segal, K. T. Hartwig, and R. E. Goforth, Mater. Sci. Eng. A224, 107 (1997).

    Google Scholar 

  37. V. M. Segal, Mater. Sci. Eng. A271, 322 (1999).

    Google Scholar 

  38. R. Z. Valiev et al., Prog. Mater. Sci. (1999).

  39. M. Besterci, Dispersion-Strengthened Aluminum Prepared by Mechanical Alloying (Cambridge International Sci., Cambridge, UK, 1998).

    Google Scholar 

  40. P. R. Soni, Mechanical Alloying—Fundamentals and Applications (Cambridge International Sci., Cambridge, UK, 2000).

    Google Scholar 

  41. H. Zoz, D, Ernst, R. Reichardt, T. Mizutani, M. Nishida, and H. Okouchi, Metall 52, 521 (1998).

    Google Scholar 

  42. H. Zoz, H. U. Benz, K. Hüttebräucker, H. Ren, and R. Reichardt, Mater. Sci. Forum, in press (2000).

  43. E. Ivanov, B. Darriet, I. Konstanchuk, A. Stepanov, K. Gerasimov, and P. Hagenmuller, Reactivity of Solids: Proceedings of the 10th International Symposium Reactivity of Solids, Dijon, 27–31 Aug. 1984, P. Barret and L. Dufour, eds. (Elsevier, Amsterdam, 1985), pp. 787–790.

    Google Scholar 

  44. E. Ivanov, I. Konstanchuk, A. Stepanov, and V. Boldyrev, J. Less-Common Met. 131, 25 (1987).

    Google Scholar 

  45. I. Konstanchuk, E. Ivanov, and V. Boldyrev, Uspehi Chimii (Chem. Rev.) 67, 75 (1998).

    Google Scholar 

  46. J.-L. Bobet, Mater. Sci. Forum, in press (2000).

  47. J.-L. Bobet, E. Akiba, and B. Darriet, Intern. J. Hydrogen Energy, in press.

  48. A. Zaluska, L. Zaluski, and J. O. Ström-Olsen, J. Alloys Comp. 288, 217 (1998).

    Google Scholar 

  49. J.-L. Bobet, C. Even, Y. Nakamura, E. Akiba, and B. Darriet, J. Alloys Comp. 298, 279 (2000).

    Google Scholar 

  50. G. Liang, J. Huot, S. Boily, A. Van Neste, and R. Schulz, J. Alloys Comp. 291, 295 (1999).

    Google Scholar 

  51. T. H. Courtney, Rev. Particulate Mater. 2, 63 (1994); Scripta Mater. 34, 5–11 (1996).

    Google Scholar 

  52. P. H. Shingu, K. N. Ishihara, K. Uenishi, J. Kuyama, B. Huang, and S. Nasu, in Solid State Powder Processing, A. H. Clauer and J. J. deBarbadillo, eds. (TMS, Warrendale, Pennsylvania, 1990), pp. 21–34.

    Google Scholar 

  53. A. D. Jatkar and J. S. Benjamin, Mater. Sci. Forum 88–90, 67 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, E., Suryanarayana, C. Materials and Process Design through Mechanochemical Routes. Journal of Materials Synthesis and Processing 8, 235–244 (2000). https://doi.org/10.1023/A:1011372312172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011372312172

Navigation