Skip to main content
Log in

Subgrid Modeling of Turbulent Premixed Flames in the Flamelet Regime

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large eddy simulation (LES) models for flamelet combustion are analyzed by simulating premixed flames in turbulent stagnation zones. ALES approach based on subgrid implementation of the linear eddy model(LEM) is compared with a more conventional approach based on the estimation of the turbulent burning rate. The effects of subgrid turbulence are modeled within the subgrid domain in the LEM-LES approach and the advection (transport between LES cells) of scalars is modeled using a volume-of-fluid (VOF) Lagrangian front tracking scheme. The ability of the VOF scheme to track the flame as a thin front on the LES grid is demonstrated. The combined LEM-LES methodology is shown to be well suited for modeling premixed flamelet combustion. The geometric characteristics of the flame surfaces, their effects on resolved fluid motion and flame-turbulence interactions are well predicted by the LEM-LES approach. It is established here that local laminar propagation of the flamelets needs to be resolved in addition to the accurate estimation of the turbulent reaction rate. Some key differences between LEM-LES and the conventional approach(es) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashurst, W., Kerstein, A., Kerr, R. and Gibson, C., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Physics of Fluids A 30(8) (1987) 2343–2353.

    Article  ADS  Google Scholar 

  2. Ashurst, W. and Shepherd, I.G., Flame front curvature distributions in a turbulent premixed flame zone. Combustion Science and Technology 124 (1997) 115–144.

    Google Scholar 

  3. Ashurst, W.T., Geometry of premixed flames in three-dimensional turbulence. In: Center for Turbulence Research, Proceedings of the Summer Program. Stanford University (1990) pp. 245–253.

  4. Ashurst, W.T., Modeling turbulent flame propagation. Proceedings of the Combustion Institute 25 (1994) 1075–1089 (Topical Review).

    Google Scholar 

  5. Boger, M.D., Veynante, D., Boughanem, H. and Trouve, A., Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proceedings of the Combustion Institute 27 (1998) 917–925.

    Google Scholar 

  6. Boughanem, H. and Trouve, A., The domain of influence of flame instabilities in turbulent premixed combustion. Proceedings of the Combustion Institute 27 (1998) 971–978.

    Google Scholar 

  7. Bray, K. Libby, P. and Moss, J., Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combustion Science and Technology 41 (1984) 143–172.

    Google Scholar 

  8. Bray, K.N.C., Chamption, M. and Libby, P.A., Premixed flames in stagnating turbulence. Part III. The k-ε theory for reactants impinging on a wall. Combustion and Flame 91 (1992) 165–186.

    Article  Google Scholar 

  9. Cant, R.S., Rutland, C.J. and Trouvé, A., Statistics for laminar flamelet modeling. In: Center for Turbulent Research, Proceedings of the Summer Program. Stanford University (1990) pp. 271–279.

  10. Chakravarthy, V. and Menon, S., Stochastic subgrid modeling of turbulent premixed flames. Georgie Tech Computational Combustion Laboratory, Report CCL-003.

  11. Cheng, R. and Shepherd, I., A comparison of the velocity and scalar spectra in premixed turbulent flames. Combustion and Flame 78 (1989) 205–221.

    Article  Google Scholar 

  12. Cheng, R.K. and Shepherd, I.G., The influence of burner geometry on premixed turbulent flame propagation. Combustion and Flame 85 (1991) 7–26.

    Article  Google Scholar 

  13. Cho, P., Law, C.K., Cheng, R.K. and Shepherd, I.G., Velocity and scalar fields of turbulent premixed flames in stagnation flow. Proceedings of the Combustion Institute 22 (1988) 739–745.

    Google Scholar 

  14. Cho, P., Law, C.K., Hertzberg, J.R. and Cheng, R.K., Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proceedings of the Combustion Institute 21 (1986) 1493–1499.

    Google Scholar 

  15. Erlebacher, G., Hussaini, M.Y., Speziale, C.G. and Zang, T.A., Toward the large-eddy simulation of compressible turbulent flows. Journal of Fluid Mechanics 238 (1992) 155–185.

    Article  MATH  ADS  Google Scholar 

  16. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A 3(11) (1991) 1760–1765.

    Article  MATH  ADS  Google Scholar 

  17. Ghosal, S., Lund, T.S., Moin, P. and Akselvoll, K., A dynamic localization model for large-eddy simulation of turbulent flows. Journal of Fluid Mechanics 286 (1995) 229–255.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. Im, H.G., Study of turbulent premixed flame propagation using a laminar flamelet model. In: Center for Turbulent Research, Annual Research Briefs. (1995) pp. 347–360.

  19. Im, H.G., Lund, T.S. and Ferziger, J.H., Large eddy simulation of turbulent front propagation with dynamic subgrid models. Physics of Fluids A 9(12) (1997) 3826–3833.

    Article  MathSciNet  ADS  Google Scholar 

  20. Kerstein, A.R., Linear-eddy model of turbulent transport II. Combustion and Flame 75 (1989) 397–413.

    Article  ADS  Google Scholar 

  21. Kerstein, A.R., Linear-eddy modeling of turbulent transport. Part 6._Microstructure of diffusive scalar mixing fields. Journal of Fluid Mechanics 231 (1991) 361–394.

    Article  MATH  ADS  Google Scholar 

  22. Kerstein, A.R., Ashurst, W.T. and Williams, F.A., The field equation for interface propagation in an unsteady homogeneous flow field. Physical Review A 37 (1988) 2728–2731.

    Article  ADS  Google Scholar 

  23. Kim, W.-W. and Menon, S., A new incompressible solver for large-eddy simulations. International Journal of Numerical Fluid Mechanics 31 (1999) 983–1017.

    Article  MATH  Google Scholar 

  24. Kim, W.-W., Menon, S. and Mongia, H.C., Large-eddy simulation of a gas turbine combustor flow. Combustion Science and Technology 143 (1999) 25–62.

    Google Scholar 

  25. Kraichnan, R., Eddy viscosity in two and three dimensions. Journal of Atmospheric Science 33 (1976) 1521–1536.

    Article  ADS  Google Scholar 

  26. Lesieur, M. and Metais, O., New trends in large eddy simulations of turbulence. Annual Review of Fluid Mechanics 28 (1996) 45–82.

    Article  MathSciNet  ADS  Google Scholar 

  27. Li, S.C., Libby, P.A., Williams, F.A., Experimental investigation of a premixed flame in an impinging turbulent stream. Proceedings of the Combustion Institute 25 (1994) 1207–1214.

    Google Scholar 

  28. Lindstedt, R.P. and Vaos, E.M., Modeling of premixed turbulent flames with second moment methods. Combustion and Flames 116 (1999) 461–485.

    Article  Google Scholar 

  29. Liu, Y., Lenze, B. and Leuckel, W., Investigation on the combustion-turbulence interaction in premixed stagnation flames of H2-CH4 mixtures. In: Durst, F. (ed.), Turbulent Shear Flows 7. Springer-Verlag, Berlin (1991) pp. 357–366.

    Google Scholar 

  30. Lund, T.S., Ghosal, S. and Moin, P., Numerical experiments with highly-variable eddy viscosity models. In: Piomelli, U. and Ragab, S. (eds), Engineering Applications of Large Eddy Simulations, FED ASME, Vol. 162. ASME, New York (1993) pp. 7–11.

    Google Scholar 

  31. McLaughlin, R. and Zhu, J., The effect of finite front thickness on the enhanced speed of propagation. Combustion Science and Technology 129 (1997) 89–112.

    Google Scholar 

  32. McMurtry, P., Jou, W.-H., Riley, J. and Metcalfe, R., Direct numerical simulations of a reacting mixing layer with chemical heat release. AIAA–85–0143 (1985).

  33. Meneveau, C. and Poinsot, T., Stretching and quenching of flamelets in premixed turbulent combustion. Combustion and Flame 86 (1991) 311–332.

    Article  Google Scholar 

  34. Menon, S. and Jou, W.-H., Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor. Combustion Science and Technology 75 (1991) 53–72.

    Google Scholar 

  35. Menon, S., McMurtry, P. and Kerstein, A.R., A linear eddy mixing model for large eddy simulation of turbulent combustion. In: Galperin, B. and Orszag, S. (eds), LES of Complex Engineering and Geophysical Flows. Cambridge University Press, Cambridge (1993) pp. 287–314.

    Google Scholar 

  36. Mounaim-Rousselle, C. and Gokalp, I., Strain effects on the structure of counterflowing turbulent premixed flames. Proceedings of the Combustion Institute 25 (1994) 1199–1205.

    Google Scholar 

  37. Pao, Y., Structure of turbulent velocity and scalar fields at large wave numbers. The Physics of Fluids 8 (1965) 1063–1070.

    Article  Google Scholar 

  38. Piana, J., Ducros, F. and Veynante, D., Large eddy simulations of turbulent premixed flames based on the G-equation and a flame front wrinkling description. In: Durst, F., Kasagi, N., Launder, B.E., Schmidt, F.W. and Suzuki, K. (eds), Proceedings of 11th Symposium on Turbulent Shear Flows. Springer-Verlag, Berlin (1997) pp. 21.13–21.18.

    Google Scholar 

  39. Poinsot, T., Veynante, D. and Candel, S., Diagrams of premixed turbulent combustion based on direct simulation. Proceedings of the Combustion Institute 23 (1990) 613–619.

    Google Scholar 

  40. Rider, W.J. and Kothe, D.B., Reconstructing volume tracking. Journal of Computational Physics 141 (1998) 112–152.

    Article  MATH  MathSciNet  Google Scholar 

  41. Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics 18 (1975) 376–404.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. Sethian, J., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Material Science. Cambridge University Press, Cambridge (1996).

    Google Scholar 

  43. Shepherd, I.G., Flame surface density and burning rate in premixed turbulent flames. Proceedings of the Combustion Institute 26 (1996) 373–379.

    Google Scholar 

  44. Shepherd, I.G. and Ashurst, W.T., Flame front geometry in premixed turbulent flames. Proceedings of the Combustion Institute 24 (1992) 485–491.

    Google Scholar 

  45. Smith, T. and Menon, S., One-dimensional simulations of freely propagating turbulent premixed flames. Combustion Science and Technology 128 (1996) 99–130.

    Google Scholar 

  46. Smith, T.M. and Menon, S., The structure of premixed flames in a spatially evolving turbulent flow. Combustion Science and Technology 119(1–6) (1996) 77–106.

    Google Scholar 

  47. Smith, T.M. and Menon, S., Subgrid combustion modeling for premixed turbulent reacting flows. AIAA–98–0242 (1998).

  48. Trouvé, A. and Poinsot, T., The evolution equation for the flame surface density in turbulent premixed combustion. Journal of Fluid Mechanics 278 (1994) 1–31.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Veynante, D., Piana, J., Duclos, J.M. and Martel, C., Experimental analysis of flame surface density models for premixed turbulent combustion. Proceedings of the Combustion Institute 26 (1996) 413–420.

    Google Scholar 

  50. Veynante, D., Trouvé, A., Bray, K.N.C. and Mantel, T., Gradient and counter-gradient scalar transport in turbulent premixed flames. Journal of Fluid Mechanics 332 (1997) 263–293.

    MATH  ADS  Google Scholar 

  51. Weller, H.G., Tabor, G., Gosman, A.D. and Fureby, C., Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proceedings of the Combustion Institute 27 (1998) 899–907.

    Google Scholar 

  52. Wenzel, H. and Peters, N., Direct numerical simulation of the propagation of a flame front in a homogeneous turbulent flow field. Proceedings of 17th International Colloquium on the Dynamics of Explosions and Reactive Systems (1999), Combustion Science and Technology (2001) to appear.

  53. Wu, A.S. and Bray, K.N.C., A coherent flame model of premixed turbulent combustion in a counterflow geometry. Combustion and Flame 109 (1997) 43–64.

    Article  Google Scholar 

  54. Yakhot, V., Propagation velocity of premixed turbulent flames. Combustion Science and Technology 60 (1988) 191–214.

    MathSciNet  Google Scholar 

  55. Yeung, P.K., Girimaji, S.S. and Pope, S.B., Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets. Combustion and Flame 79 (1990) 340–365.

    Article  Google Scholar 

  56. Zang, Y., Street, R.L. and Koseff, J.R., A non-staggered grid, fractional step method for time dependent incompressible Navier-Stokes equations in curvilinear coordinates. Journal of Computational Physics 114(1) (1994) 18–33.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. Zhang, S. and Rutland, C.J., Premixed flame effects on turbulence and pressure-related terms. Combustion and Flame 102 (1995) 447–461.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarthy, V., Menon, S. Subgrid Modeling of Turbulent Premixed Flames in the Flamelet Regime. Flow, Turbulence and Combustion 65, 133–161 (2000). https://doi.org/10.1023/A:1011456218761

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011456218761

Navigation