Skip to main content
Log in

Idempotent Interval Analysis and Optimization Problems

  • Published:
Reliable Computing

Abstract

Many problems in optimization theory are strongly nonlinear in the traditional sense but possess a hidden linear structure over suitable idempotent semirings. After an overview of "Idempotent Mathematics" with an emphasis on matrix theory, interval analysis over idempotent semirings is developed. The theory is applied to construction of exact interval solutions to the interval discrete stationary Bellman equation. Solution of an interval system is typically NP-hard in the traditional interval linear algebra; in the idempotent case it is polynomial. A generalization to the case of positive semirings is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alefeld, G. and Herzberger, J.: Introduction to Interval Computations, Academic Press, New York, 1983.

    MATH  Google Scholar 

  2. Avdoshin, S. M., Belov, V. V., and Maslov, V. P.: Mathematical Aspects of Computational Media Design, MIEM Press, Moscow, 1984 (in Russian).

    Google Scholar 

  3. Baccelli, F. L., Cohen, G., Olsder, G. J., and Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley & Sons Publishers, New York, 1992.

    Google Scholar 

  4. Backhouse, R. and Carré, B. A.: Regular Algebra Applied to Path-Finding Problems, J. Inst. Maths Applics 15(1975), pp. 161-186.

    MATH  Google Scholar 

  5. Barth, W. and Nuding, E.: Optimale Lösung von Intervallgleichungsystemen, Computing 12 (1974), pp. 117-125.

    Article  MATH  MathSciNet  Google Scholar 

  6. Carré, B. A.: An Algebra for Network Routing Problems, J. Inst. Maths Applics 7(1971), pp. 273-294.

    MATH  Google Scholar 

  7. Carré, B. A.: Graphs and Networks, Oxford University Press, Oxford, 1979.

    MATH  Google Scholar 

  8. Coxson, G. E.: Computing Exact Bounds on Elements of an Inverse Interval Matrix Is NP-hard, Reliable Computing 5(2) (1999), pp. 137-142.

    Article  MATH  MathSciNet  Google Scholar 

  9. Dudnikov, P. S. and Samborskii, S.N.: Endomorphisms of Finitely Generated Free Semimodules, in [32], pp. 65-85.

  10. Dudnikov, P. S. and Samborskii, S. N.: Endomorphisms of Semimodules over Semirings with an Idempotent Operation, preprint of the Mathematical Institute of Ukrainian Academy of Sciences, Kiev, 1987 (in Russian); Izv. Akad. Nauk SSSR, ser. math. 55(1) (dy1991), pp. 93-109; English transl. in Math. USSR Izvestiya vn38(1) (dy1992), pp. 91-105.

    Google Scholar 

  11. Golan, J.: Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 2000.

    MATH  Google Scholar 

  12. Gunawardena, J. (ed.): Idempotency, Publ. of the Newton Institute, Cambridge University Press, Cambridge, 1998.

    MATH  Google Scholar 

  13. Kaucher, E.: Algebraische Erweiterungen der Intervallrechnung unter Erhaltung Ordnungs-und Verbandsstrukturen, Computing, Suppl. 1 (1977), pp. 65-79.

    MATH  Google Scholar 

  14. Kaucher, E.: Interval Analysis in the Extended Interval Space ℝ, Computing, Suppl. 2(1980), pp. 33-49.

    MATH  MathSciNet  Google Scholar 

  15. Kearfott, R. B.: Rigorous Global Search: Continuous Problems, Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  16. Kleene, S. C.: Representation of Events in Nerve Sets and Finite Automata, in:McCarthy, J. and Shannon, C. (eds), Automata Studies, Princeton University Press, Princeton, 1956, pp. 3-40.

    Google Scholar 

  17. Kolokoltsov, V. N. and Maslov, V. P.: Idempotent Analysis and Applications, Kluwer Academic Publishers, Dordrecht, 1997.

    Google Scholar 

  18. Kreinovich, V., Lakeyev, A. V., and Noskov, S. I.: Optimal Solution of Interval Linear Systems Is Intractable (NP-Hard), Interval Computations (1) (1993), pp. 6-14.

    MATH  MathSciNet  Google Scholar 

  19. Kreinovich, V., Lakeyev, A. V., and Rohn, J.: Computational Complexity of Interval Algebraic Problems: Some Are Feasible and Some Are Computationally Intractable: A Survey, in: Alefeld, G., Frommer, A., and Lang, B. (eds), Scientific Computing and Validated Numerics, Akademie Verlag, Berlin, 1996, pp. 293-306.

    Google Scholar 

  20. Kreinovich, V., Lakeyev, A. V., Rohn, J., and Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations, Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  21. Lakeyev, A. V. and Kreinovich, V.: NP-Hard Classes of Linear Algebraic Systems with Uncertainties, Reliable Computing 3(1) (1997), pp. 51-81.

    Article  MATH  MathSciNet  Google Scholar 

  22. Lakeyev, A. V. and Noskov, S. I.: Description of the Solution Set to Linear Equation with the Intervally Defined Operator and Right-Hand Side, Doklady Akademii Nauk 330(4) (1993), pp. 430-433 (in Russian).

    Google Scholar 

  23. Lakeyev, A. V. and Noskov, S. I.: Description of the Solution Set to Linear Equation with the Intervally Defined Operator and Right-Hand Side, Sibirskii Mat. Zhurnal 35(5) (1994), pp. 1074-1084 (in Russian).

    Google Scholar 

  24. Lehmann, D.: Algebraic Structures for Transitive Closure, Theor. Comput. Sc. 4 (1977), pp. 59-76.

    Article  MATH  MathSciNet  Google Scholar 

  25. Litvinov, G. L. and Maslov, V. P.: Correspondence Principle for Idempotent Calculus and Some Computer Applications, Institut des Hautes Etudes Scientifiques, IHES/M/95/33, Bures-sur-Yvette, 1995; [12], pp. 420-443, see also http://sophuslie. euro.ru/biblio/idempan/cor.ps, math.GM/0101021, LANL e-print archive (http://arXiv.org).

    MathSciNet  Google Scholar 

  26. Litvinov, G. L., Maslov, V. P., and Rodionov, A. Ya.: A Unifying Approach to Software and Hardware Design for Scientific Calculations and Idempotent Mathematics, Reliable Computing, submitted.

  27. Litvinov, G.L., Maslov, V. P., and Rodionov, A.Ya.:UnifyingApproach to Software andHardware Design for Scientific Calculations, preprint, International Sophus Lie Centre, 1995, see also http://sophus-lie.euro.ru/biblio/idempan/lrkluw.ps, quant-ph/9904024, LANL e-print archive (http://arXiv.org).

  28. Litvinov, G. L., Maslov, V. P., and Shpiz, G. B.: Idempotent Functional Analysis: An Algebraic Approach, preprint, International Sophus Lie Centre, 1998 (in Russian; to be published in Math. Notes 69(5) (2001) in English), see also http://sophuslie. euro.ru/biblio/idempan/funanto.ps (in Russian), math.FA/0009128, LANL e-print archive (http://arXiv.org; in English).

  29. Litvinov, G. L., Maslov, V. P., and Shpiz, G. B.: Linear Functionals on Idempotent Spaces: An Algebraic Approach, Doklady Akademii Nauk 363(1998), pp. 298-300 (in Russian). English translation in: Doklady Mathematics vn58(1998), pp. 389-391, see also http://sophus-lie.euro.ru/biblio/idempan/fun-eng.ps, math.FA/0012168, LANL e-print archive (http://arXiv.org).

    MATH  MathSciNet  Google Scholar 

  30. Litvinov, G. L. and Sobolevski?, A. N.: Exact Interval Solutions of the Discrete Bellman Equation and Polynomial Complexity of Problems in Interval Idempotent Linear Algebra, Doklady Akademii Nauk 374(2000), pp. 304-306 (in Russian), see also English translation in: http://sophus-lie.euro.ru/biblio/idempan/daneng.ps, math.LA/0101041, LANL e-print archive (http://arXiv.org).

    MATH  MathSciNet  Google Scholar 

  31. Maslov, V. P.: New Superposition Principle for Optimization Problems, in: Seminaire sur les Equations aux Dérivées Partielles 1985/86, Centre Mathematique de l'Ecole Polytechnique, Palaiseau, 1986, exposé 24.

    Google Scholar 

  32. Maslov, V. P. and Samborskii, S. N. (eds): Idempotent Analysis (Advances in Soviet Mathematics, Vol. 13), American Mathematical Society, Providence, 1992.

  33. Moore, R. E.: Methods and Applications of Interval Analysis, SIAM, Philadelphia, 1979.

    MATH  Google Scholar 

  34. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  35. Rote, G.: A Systolic Array Algorithm for the Algebraic Path Problem (Shortest Path; Matrix Inversion), Computing 34(1985), pp. 191-219.

    Article  MATH  MathSciNet  Google Scholar 

  36. Shary, S. P.: Algebraic Approach in the “Outer Problem” for Interval Linear Equations, Reliable Computing 3(2) (1997), pp. 103-135.

    Article  MATH  MathSciNet  Google Scholar 

  37. Shary, S. P.: Algebraic Approach to the Interval Linear Static Identification, Tolerance, and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing 2(1) (1996), pp. 3-33.

    Article  MATH  MathSciNet  Google Scholar 

  38. Sobolevski?, A. N.: Interval Arithmetic and Linear Algebra over Idempotent Semirings, Doklady Akademii Nauk 369(1999), pp. 747-749 (in Russian).

    MathSciNet  Google Scholar 

  39. Voevodin, V. V.: Mathematical Foundations of Parallel Computations, Moscow State University Press, Moscow, 1991 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvinov, G.L., Sobolevskiī, A.N. Idempotent Interval Analysis and Optimization Problems. Reliable Computing 7, 353–377 (2001). https://doi.org/10.1023/A:1011487725803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011487725803

Keywords

Navigation