Skip to main content
Log in

A library of Arabidopsis 35S-cDNA lines for identifying novel mutants

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have developed a system to over-express or co-suppress random cDNAs in Arabidopsis thaliana upon Agrobacterium tumefaciens-mediated transformation. We constructed a binary vector containing a novel Arabidopsis cDNA library driven by the cauliflower mosaic virus (CaMV) 35S promoter. The vector, 35SpBARN, offers in terra selection with glufosinate ammonium (BASTA) and the ability to identify the cDNA insert using PCR with flanking primers. We introduced this overexpression library into Arabidopsis and selected over 30 000 transformants. A random sample of 50 T1 plants was analyzed to determine the quality of the cDNA library in planta. About 90% of T1 plants in the collection have inserts, the average insert size is ca. 1.1 kb, and ca. 43% of these inserts appear to encode full-length proteins. T1 plants were screened for visible abnormalities, and one mutant, V5, was chosen for further study. This mutant displays a pale green phenotype, and its transgene contains a partial petH cDNA encoding chloroplast ferredoxin-NADP+ reductase (EC 1.18.1.2). This construct co-suppresses the endogenous petH transcript. We recapitulated the mutant phenotype by expressing either the full-length or truncated petH cDNA from the CaMV 35S promoter in wild-type Arabidopsis. Our results indicate that co-suppressing endogenous genes can cause dominant phenotypes as expected. As we have also used the 35SpBARN vector to successfully over-express other transcripts in planta, we predict that this system will be generally useful for identifying genes that yield phenotypes upon over-expression as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  PubMed  Google Scholar 

  • Arakaki, A.K., Ceccarelli, E.A. and Carrillo, N. 1997. Plant-type ferredoxin-NADP+reductases: a basal structural framework and a multiplicity of functions. FASEB J. 11: 133–140.

    PubMed  Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1995. Short Protocols in Molecular Biology, 3rd ed. John Wiley, New York.

    Google Scholar 

  • Bleecker, A.B., Esch, J.J., Hall, A.E., Rodríguez, F.I. and Binder, B.M. 1998. The ethylene-receptor family from Arabidopsis: structure and function. Phil. Trans. R. Soc. Lond. B 353: 1405–1412.

    Google Scholar 

  • Celenza, J.L., Grisafi, P.L. and Fink, G.R. 1995. A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev. 9: 2131–2142.

    PubMed  Google Scholar 

  • Chuang, C.-F. and Meyerowitz, E.M. 2000. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97: 4985–4990.

    PubMed  Google Scholar 

  • Church, G.M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    PubMed  Google Scholar 

  • Clough, S.J. and Bent, A.F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743.

    PubMed  Google Scholar 

  • de Wet, J.R., Wood, K.V., DeLuca, M., Helenski, D.R. and Subramani, S. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7: 725–737.

    PubMed  Google Scholar 

  • Fridborg, I., Kuusk, S., Moritz, T. and Sundberg, E. 1999. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11: 1019–1031.

    PubMed  Google Scholar 

  • Furini, A., Koncz, C., Salamini, F. and Bartels, D. 1997. High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J. 16: 3599–3608.

    PubMed  Google Scholar 

  • Haughn, G.W. and Somerville, C. 1986. Sulfonylurea-resistant mu-tants of Arabidopsis thaliana. Mol. Gen. Genet. 204: 430–434.

    Article  Google Scholar 

  • Hua, J. and Meyerowitz, E.M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261–271.

    PubMed  Google Scholar 

  • Hull, A.K., Viji, R. and Celenza, J.L. 2000. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc. Natl. Acad. Sci. USA 97: 2379–2384.

    PubMed  Google Scholar 

  • Kardialsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. 1999. Activation tagging of the floral inducer FT. Science 286: 1962–1965.

    Google Scholar 

  • Koncz, C. and Schell, J. 1986. The promoter of the T L-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vectors. Mol. Gen. Genet. 204: 383–396.

    Article  Google Scholar 

  • Last, R.L. and Fink, G.R. 1988. Tryptophan-requiring mutants of the plant Arabidopsis thaliana. Science 240: 305–310.

    Google Scholar 

  • Leyser, H.M.O., Pickett, F.B., Dharmasiri, S. and Estelle, M. 1996. Mutations in the AXR3 gene of Arabidopsis result in altered auxin response including ectopic expression from the SAUR-AC1 promoter. Plant J. 10: 403–413.

    PubMed  Google Scholar 

  • Lin, X., Kaul, S. and Shea, T.P. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761–768.

    PubMed  Google Scholar 

  • Liu, H., Krizek, J. and Bretscher, A. 1992. Construction of a GAL1-regulated yeast cDNA expression library and its application to the identification of genes whose overexpression causes lethality in yeast. Genetics 132: 665–673.

    PubMed  Google Scholar 

  • Mayer, K., Schüller, C. and Wambutt, R. 1999. Sequence and analy-sis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769–777.

    Google Scholar 

  • Mengiste, T., Amedeo, P. and Paszkowski, J. 1997. High-efficiency transformation of Arabidopsis thaliana with a selectable marker gene regulated by the T-DNA 1’ promoter. Plant J. 12: 945–948.

    PubMed  Google Scholar 

  • Meyer, P. and Saedler, H. 1996. Homology-dependent gene silencing in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 23–48.

    PubMed  Google Scholar 

  • Nagy, F., Kay, S.A. and Chua, N.-H. 1988. Analysis of gene expression in transgenic plants. In: S.B. Gelvin and R.A. Schilperoort (Eds.) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. B4: 1-29.

    Google Scholar 

  • Neff, M.M., Nguyen, S.M., Malancharuvil, E.J., Fujioka, S., Noguchi, T., Seto, H., Tsubuki, M., Honda, T., Takatsuto, S., Yoshida, S. and Chory, J. 1999. BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. USA 96: 15316–15323.

    PubMed  Google Scholar 

  • Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. 2000. FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101: 331–340.

    PubMed  Google Scholar 

  • Rogg, L.E., Lasswell, J. and Bartel, B. 2001. A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13: 645–480.

    PubMed  Google Scholar 

  • Rouse, D., Mackay, P., Stirnberg, P., Estelle, M. and Leyser, O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. Science 279: 1371–1373.

    Google Scholar 

  • Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I.A. and Coupland, G. 1998. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229.

    PubMed  Google Scholar 

  • Sharp, P.A. 1999. RNAi and double-stranded RNA. Genes Dev. 13: 139–141.

    PubMed  Google Scholar 

  • Van Houdt, H., Van Montagu, M. and Depicker, A. 2000. Both sense and antisense RNAs are targets for the sense transgene-induced posttranscriptional silencing mechanism. Mol. Gen. Genet. 263: 995–1002.

    Google Scholar 

  • Vaucheret, H., Béclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.-B., Mourrain, P., Palauqui, J.-C. and Vernhettes, S. 1998. Trangene-induced gene silencing in plants. Plant J. 16: 651–659.

    PubMed  Google Scholar 

  • Weigel, D., Ahn, J.H., Blazquez, M.A., Borevitz, J.O., Christensen, S.K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malan-charuvil, E.J., Neff, M.M., Nguyen, J.T., Sato, S., Wang, Z.-Y., Xia, Y., Dixon, R.A., Harrison, M.J., Lamb, C.J., Yanofsky, M.F. and Chory, J. 2000. Activation tagging in Arabidopsis. Plant Physiol. 122: 1003–1013.

    PubMed  Google Scholar 

  • Wilson, K., Long, D., Swinburne, J. and Coupland, G. 1996. A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8: 659–671.

    PubMed  Google Scholar 

  • Worley, C.K., Zenser, N., Ramos, J., Rouse, D., Leyser, O., Theologis, A. and Callis, J. 2000. Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21: 553–562.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeClere, S., Bartel, B. A library of Arabidopsis 35S-cDNA lines for identifying novel mutants. Plant Mol Biol 46, 695–703 (2001). https://doi.org/10.1023/A:1011699722052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011699722052

Navigation