Skip to main content
Log in

Efficient Pareto Frontier Exploration using Surrogate Approximations

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

In this paper we present an efficient and effective method of using surrogate approximations to explore the design space and capture the Pareto frontier during multiobjective optimization. The method employs design of experiments and metamodeling techniques (e.g., response surfaces and kriging models) to sample the design space, construct global approximations from the sample data, and quickly explore the design space to obtain the Pareto frontier without specifying weights for the objectives or using any optimization. To demonstrate the method, two mathematical example problems are presented. The results indicate that the proposed method is effective at capturing convex and concave Pareto frontiers even when discontinuities are present. After validating the method on the two mathematical examples, a design application involving the multiobjective optimization of a piezoelectric bimorph grasper is presented. The method facilitates multiobjective optimization by enabling us to efficiently and effectively obtain the Pareto frontier and identify candidate designs for the given design requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABAQUS Version 5.7-1, Hibbitt, Karlsson and Sorensen, Inc., 1080 Main Street, Pawtucket, RI, (URL: http://www.hks.com/), 1997.

  • T. W. Athan and P. Y. Papalambros, “;A note on weighted criteria methods for compromise solutions in multiobjective optimization,”; Engineering Optimization vol. 27, no. 2, pp. 155–;176, 1996.

    Google Scholar 

  • S. Azarm, B. J. Reynolds, and S. Narajanan, “;Comparison of two multiobjective optimization techniques with and within genetic algorithms,”; Advances in Design Automation, Las Vegas, NV, ASME, Sept. 12–;15, 1999, Paper No. DETC99/DAC-8584.

    Google Scholar 

  • R. Balling, “;Design by shopping: A new paradigm?,”; Proc. Third World Congress of Structural and Multidisciplinary Optimization, C. L. Bloebaum and K. E. Lewis et al., eds. Buffalo, NY, University at Buffalo vol. 1, May 17–;21, 1999, pp. 295–;297.

    Google Scholar 

  • R. J. Balling, J. T. Taber, M. R. Brown, and K. Day, “;Multiobjective urban planning using genetic algorithm,”; Journal of Urban Planning and Development vol. 125, no. 2, pp. 86–;99, 1999.

    Google Scholar 

  • J.-F. M. Barthelemy and R. T. Haftka, “;Approximation concepts for optimum structural design—;A review,”; Structural Optimization vol. 5, pp. 129–;144, 1993.

    Google Scholar 

  • A. J. Booker, “;Design and analysis of computer experiments,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA vol. 1, Sept. 2–;4, 1998, pp. 118–;128. AIAA-98-4757.

    Google Scholar 

  • D. J. Cappelleri and M. I. Frecker, “;Optimal design of smart tools for minimally invasive surgery,”; Optimization in Industry II, F. Mistree and A. D. Belegundu, eds. Banff, Alberta, Canada, ASME, July 6–;11, 1999.

    Google Scholar 

  • D. J. Cappelleri, M. I. Frecker, and T. W. Simpson, “;Optimal design of a PZT bimorph actuator for minimally invasive surgery,”; 7th International Symposium on Smart Structures and Materials, Newport Beach, CA, SPIE, Mar. 5–;9, 1999.

    Google Scholar 

  • D. J. Cappelleri, M. I. Frecker, T. W. Simpson, and A. Snyder, “;A metamodel-based approach for optimal design of a PZT bimorph actuator for minimally invasive surgery,”; Journal of Mechanical Design 2001, to appear.

  • F. Y. Cheng and D. Li, “;Multiobjective optimization design with Pareto genetic algorithm,”; Journal of Structural Engineering vol. 123, no. 9, pp. 1252–;1261, 1997.

    Google Scholar 

  • I. Das, “;An improved technique for choosing parameters for Pareto surface generation using normal-boundary intersection,”; Proc. Third World Congress of Structural and Multidisciplinary Optimization (WCSMO-3) C. L. Bloebaum and K. E. Lewis et al., eds., Buffalo, NY, University at Buffalo, vol. 2, May 17–;21, 1999, pp. 411–;413.

    Google Scholar 

  • I. Das, “;Optimization large systems via optimal multicriteria component assembly,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA, vol. 1, Sept. 2–;4, 1998, pp. 661–;669, AIAA-98-4791.

    Google Scholar 

  • I. Das and J. E. Dennis, “;A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems,”; Structural Optimization vol. 14, no. 1, pp. 63–;69, 1997.

    Google Scholar 

  • I. Das, and J. E. Dennis, “;Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems,”; SIAM Journal on Optimization vol. 8, no. 3, pp. 631–;657, 1998.

    Google Scholar 

  • W. Fatikow and Rembold, U., Microsystem Technology and Microrobotics, Springer-Verlag: New York, 1997.

    Google Scholar 

  • A. Giunta, L. T. Watson, and J. Koehler, “;A comparison of approximation modeling techniques: Polynomial versus interpolating models,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA vol. 1, Sept. 2–;4, 1998, pp. 392–;404. AIAA-98-4758.

    Google Scholar 

  • IEEE Group on Sonics and Ultrasonics,Transducers and Resonators Committee, IEEE Standard on Piezoelectricity (176-1978), ANSI/IEEE: New York, 1978.

    Google Scholar 

  • E. M. Kasprazak and K. E. Lewis, “;A method to determine optimal relative weights for Pareto solution sets,”; Proc. Third World Congress of Structural and Multidisciplinary Optimization (WCSMO-3), C. L. Bloebaum and K. E. Lewis et al., eds., Buffalo, NY, University at Buffalo vol. 2, May 17–;21, 1999, pp. 408–;410.

    Google Scholar 

  • J. R. Koehler and A. B. Owen, “;Computer experiments,”; Handbook of Statistics, S. Ghosh and C. R. Rao, eds. Elsevier Science: New York, 1996, pp. 261–;308.

    Google Scholar 

  • J. Koski, “;Defectiveness of weighting method in multicriterion optimization of structures,”; Communications in Applied Numerical Methods vol. 1, pp. 333–;337, 1985.

    Google Scholar 

  • Y. Li, G. M. Fadel, and M. M. Wiecek, “;Approximating Pareto curves using the hyper-ellipse,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA vol. 3, Sept. 2–;4, 1998, pp. 1990–;2002.

    Google Scholar 

  • E. R. Liberman, “;Soviet multi-objective mathematical programming methods: An overview,”; Management Science vol. 37, no. 9, pp. 1147–;1165, 1991.

    Google Scholar 

  • M. D. McKay, R. J. Beckman, and W. J. Conover, “;A comparison of three methods for selecting values of input variables in the analysis of output from a computer code,”; Technometrics vol. 21, no. 2, pp. 239–;245, 1979.

    Google Scholar 

  • M. Meckesheimer, R. R. Barton, T.W. Simpson, and A. Booker, “;Computationally inexpensive metamodel assessment strategies,”; ASME Design Technical Conferences—;Design Automation Conference A. Diaz, ed. Pittsburgh, PA, ASME, Sept. 9–;12, 2001, DETC2001/DAC-21028.

    Google Scholar 

  • A. Messac, J. G. Sundararaj, R. V. Tappeta, and J. E. Renaud, “;The ability of objective functions to generate non-convex Pareto frontiers,”; 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, AIAA vol. 1, Apr. 12–;15, 1999, pp. 78–;87. AIAA-99-1211.

    Google Scholar 

  • R. H. Myers, and D. C. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley &; Sons: New York, 1995.

    Google Scholar 

  • A. Osyczka, “;Multicriteria optimization for engineering design,”; in Design Optimization, J. S. Gero, ed. Academic Press: New York, 1985, pp. 193–;227.

    Google Scholar 

  • A. Osyczka and S. Kundu, “;A new method to solve generalized multicriteria optimization problems using the simple genetic alrogithm,”; Structural Optimization vol. 10, no. 2, pp. 94–;99, 1995.

    Google Scholar 

  • A. B. Owen, “;Orthogonal arrays for computer experiments, integration and visualization,”; Statistica Sinica vol. 2, pp. 439–;452, 1992.

    Google Scholar 

  • J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “;Design and analysis of computer experiments,”; Statistical Science vol. 4, no. 4, pp. 409–;435, 1989.

    Google Scholar 

  • E. J. Schaumann, R. J. Balling, and K. Day, “;Genetic algorithms with multiple objectives,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA vol. 3, Sept. 2–;4, 1998, pp. 2114–;2123.

    Google Scholar 

  • T. W. Simpson, T. M. Mauery, J. J. Korte, and F. Mistree. “;Comparison of response surface and kriging models for multidisciplinary design optimization,”; 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis &;;;;;;; Optimization, St. Louis, MO, AIAA vol. 1, Sept. 2–;4, 1998, pp. 381–;391, AIAA-98-4755.

    Google Scholar 

  • T. W. Simpson, T. M. Mauery, J. J. Korte, and F. Mistree, “;Kriging metamodels for global approximation in simulation-based multidisciplinary design optimization,”; AIAA Journal 2001, to appear.

  • T. W. Simpson, J. Peplinski, P. N. Koch, and J. K. Allen, “;Metamodels for computer-based engineering design: Survey and recommendations,”; Engineering with Computers vol. 17, pp. 129–;150, 2001.

    Google Scholar 

  • J. Sobieszczanski-Sobieski and R. T. Haftka, “;Multidisciplinary aerospace design optimization: Survey of recent developments,”; Structural Optimization vol. 14, pp. 1–;23, 1997.

    Google Scholar 

  • I. M. Sobol, “;An efficient approach to multicriteria optimum design problems,”; Surveys on Mathematics for Industry vol. 1, pp. 259–;281, 1992.

    Google Scholar 

  • W. Stadler and J. Dauer, “;Multicriteria optimization in engineering:Atutorial and survey,”; Structural Optimization: Status and Promise, M. P. Kamat, ed., AIAA: Washington, D.C., 1993, pp. 209–;249.

    Google Scholar 

  • R. E. Steuer, Multiple Criteria Optimization: Theory, Computation, and Application, Wiley: New York, 1986.

    Google Scholar 

  • R. V. Tappeta and J. E. Renaud, “;Interactive multiobjective optimization design strategy for decision based design,”; Advances in Design Automation, LasVegas, NV, ASME, Sept. 12–;15, 1999a, Paper No. DETC99/DAC-8581.

    Google Scholar 

  • R. V. Tappeta, and J. E. Renaud, “;Interactive multiobjective optimization procedure,”; 40th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, AIAA vol. 1, Apr. 12–;15, 1999b, pp. 27–;41, AIAA-99-1207.

    Google Scholar 

  • R.V. Tappeta, J. E. Renaud, A. Messac, and J. G. Sundararaj, “;Interactive physical programming: Tradeoff analysis and decision making in multicriteria optimization,”; 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, St. Louis, MO, AIAA vol. 1, Apr. 12–;15, 1999, pp. 53–;67, AIAA-99-1209.

    Google Scholar 

  • J. Zhang, M. M. Wiecek, and W. Chen, “;Local approximation of the efficient frontier in robust design,”; Advances in Design Automation, Las Vegas, NV, ASME, Sept. 12–;15, 1999, Paper No. DETC99/DAC-8566.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, B., Cappelleri, D., Simpson, T.W. et al. Efficient Pareto Frontier Exploration using Surrogate Approximations. Optimization and Engineering 2, 31–50 (2001). https://doi.org/10.1023/A:1011818803494

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011818803494

Navigation