Skip to main content
Log in

A new empirical formula for the bainite upper temperature limit of steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The definition of the practical upper temperature limit of the bainite reaction in steels is discussed. Because the theoretical upper temperature limit of bainite reaction, B 0, can neither be obtained directly from experimental measurements, nor from calculations, then, different models related to the practical upper temperature limit of bainite reaction, B S, are reviewed and analyzed first in order to define the B 0 temperature. A new physical significance of the B S and B 0 temperatures in steels is proposed and analyzed. It is found that the B 0 temperature of the bainite reaction in steels can be defined by the point of intersection between the thermodynamic equilibrium curve for the austenite→ferrite transformation by coherent growth (curve Z\(\gamma \to \overrightarrow \alpha \)) and the extrapolated thermodynamic equilibrium curve for the austenite→cementite transformation (curve ES in the Fe-C phase diagram). The B S temperature for the bainite reaction is about 50–55 °C lower than the B 0 temperature in steels. Using this method, the B 0 and B S temperatures for plain carbon steels were found to be 680 °C and 630 °C, respectively. The bainite reaction can only be observed below 500 °C because it is obscured by the pearlite reaction which occurs prior to the bainite reaction in plain carbon steels. A new formula, B S(°C) =, 630-45Mn-40V-35Si-30Cr-25Mo-20Ni-15W, is proposed to predict the B S temperature of steel. The effect of steel composition on the B S temperature is discussed. It is shown that B S is mainly affected by alloying elements other than carbon, which had been found in previous investigations. The new formula gives a better agreement with experimental results than for 3 other empirical formulae when data from 82 low alloy steels from were examined. For more than 70% of these low alloy steels, the B S temperatures can be predicted by this new formula within ±25°C. It is believed that the new equation will have more extensive applicability than existing equations since it is based on data for a wide range of steel compositions (7 alloying elements).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Steven and A. G. Haynes, J.Iron Steel Inst. 183 (1956) 349.

    Google Scholar 

  2. J. Zhao, Mater.Sci.and Tech. 8 (1992) 997.

    Google Scholar 

  3. R. L. Bodnar, T. Ohhashi and R. I. Jaffee, Met. Trans. 20A (1989) 1445.

    Google Scholar 

  4. R. F. Hehemann, K. R. Kinsman and H. I. Aaronson, ibid. 3 (1972) 1077.

    Google Scholar 

  5. H. I. Aaronson, “The Mechanism of Phase Transformations in Crystalline Solids” (The Institute of Metals, London, 1969) p. 270.

    Google Scholar 

  6. E. S. Davenport and E. C. Bain, Trans.Met.Soc.A.I.M.E. 90 (1930) 117.

    Google Scholar 

  7. C. Zener, Trans.Amer.Inst.Min.Met.Eng. 167 (1946) 550.

    Google Scholar 

  8. K. R. Kinsman and H. I. Aaronson, “Transformation and Hardenability in Steels” (Climax Molybdenum Co., Ann Arbor,MI, 1967) p. 39.

    Google Scholar 

  9. A. Hultgren, Jerkontorets Ann 135 (1951) 403.

    Google Scholar 

  10. J. R. Blanchard, R. M. Park and A. J. Herzig, Trans.Amer.Soc.Metals 29 (1941) 317.

    Google Scholar 

  11. J. C. Fisher, “Thermodynamics in Physical Metallurgy” (Amer. Soc. Metals, Cleveland, OH, 1950) 201.

    Google Scholar 

  12. T. Lyman and A. R. Troiano, Trans.Amer.Soc.Metals 37 (1946) 402.

    Google Scholar 

  13. A. P. Gyljaev, “Thermodynamics Development of Steels” (Mashgis, Moscow, 1960) p. 60 (in Russian).

    Google Scholar 

  14. M. E. Blanter, “Phase Transformation on the Thermodynamics Development of Steels” (Metallurgisdat, Moscow, 1962) p. 129 (in Russian).

    Google Scholar 

  15. O. Kriesement and F. Wever, in Symposium on the Mechanisms of PhaseTransformation in Metals, Monograph and Rep. Ser. no 18 (Applied Science Publishers Ltd., London, 1955) p. 253.

    Google Scholar 

  16. S. A. Leont'ev, Physics of Metals and Metallurgy 16 (1963) 516 (in Russian).

    Google Scholar 

  17. H. Krainer, M. Kroneis and R. Gatteringer, Archivf¨ur das Eiserhüten Wesen 26 (1955) 131 (in German).

    Google Scholar 

  18. H. I. Aaronson, H. A. Domain and G. M. Andes, Trans.Met.Soc.A.I.A.E. 236 (1960) 753.

    Google Scholar 

  19. H. I. Aaronson, Trans.Met.Soc.A.I.M.E. 212 (1958) 212.

    Google Scholar 

  20. Z. Zhao, C. Liu, D. O. Northwood and D. Wang, Rare Metal Materials and Engineering 28(4) (1999) 206 (in Chinese).

    Google Scholar 

  21. J. M. Robertson, J.Iron Steel Inst. 119 (1929) 391.

    Google Scholar 

  22. E. S. Davenport and E. C. Bain, Trans.Met.Soc.A.I.M.E. 90 (1930) 117.

    Google Scholar 

  23. Z. Zhao, D. O. Northwood, C. Liu, Y. Liu and D. Wang, in The Third Pacific Rim International Conference on Advanced Materials and Processing (PRICM3), edited by M. A. Imam et al. (The Mineral, Metals & Materials Society, 1998) p. 193.

  24. M. Cohen, E. S. Machlin and V. G. Paranjpe, “Thermodynamics in Physical Metallurgy” (Amer. Soc. Metals, New York, 1949).

    Google Scholar 

  25. Yunxu Liu, “Principles of Heat Treatment” (Mechanical Industry Press, Beijing, 1981) p. 76 (in Chinese).

    Google Scholar 

  26. S. V. Radcliffe, M. Schatz and S. A. Kulin, J.Iron Steel Inst. 201 (1963) 143.

    Google Scholar 

  27. T. Ko and J. Zhao, Acta Metallurgica Sinica 1 (1956) 201 (in Chinese).

    Google Scholar 

  28. R. F. Mehl, C. S. Barrett and D. W. Smith, Trans. Met.Soc.A.I.M.E. 105 (1933) 218.

    Google Scholar 

  29. R. F. Mehl and A. Dube, “Phase Transformation in Solids” Wiley, (New York, 1955) p. 99.

    Google Scholar 

  30. A. Ali and H. K. D. H. Bhadeshia, Mater.Sci.and Tech. 6 (1990) p. 781.

    Google Scholar 

  31. H. Krainer, M. Kroneis and R. Gatteringer, Archivfür das Eiserhüten Wesen 26 (1955) 131 (in German).

    Google Scholar 

  32. Cheng Liu, Ph. D. dissertation, Harbin Institute of Technology, Harbin, China, 1998 (in Chinese).

  33. H. E. Boyer, “Atlas of Isothermal Transformation and Cooling Transformation Diagrams” (Amer. Soc. Met., Metals Park, OH, 1977) p. 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Z., Liu, C., Liu, Y. et al. A new empirical formula for the bainite upper temperature limit of steel. Journal of Materials Science 36, 5045–5056 (2001). https://doi.org/10.1023/A:1011874708194

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011874708194

Keywords

Navigation