Skip to main content
Log in

Solid Lipid Nanoparticles in Lymph and Plasma After Duodenal Administration to Rats

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the uptake and transport of solid lipid nanoparticles (SLN), which have been proposed as alternative drug carriers, into the lymph and blood after duodenal administration in rats.

Methods. Single doses of two different concentrations of aqueous dispersions of unlabelled and labelled SLN (average diameter 80 nm) were administered intraduodenally to rats. At different times, samples of lymph were withdrawn by cannulating the thoracic duct and blood was sampled from the jugular vein. Monitoring continued for 45 and 180 minutes, for unlabelled and labelled SLN respectively. The biological samples were analysed by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM) and gamma-counting.

Results. TEM analysis evidenced SLN in lymph and blood after duodenal administration to rats; the size of SLN in lymph did not change markedly compared to that before administration. The labelled SLN confirmed the presence of SLN in lymph and blood.

Conclusions. The uptake and transport of SLN in the lymph, and to a lesser extent in the blood, were evidenced. The in vivo physical stability of SLN may have important implications in designing drug-carrying SLN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. A. Walker, R. Cornell, and L. M. Davenport, K. G. Isselbaker. Progress in gastroenterology uptake and transport of macromolecules by the intestine. Possible role in clinical disorders. Gastroenterology 67:531–550 (1974).

    PubMed  Google Scholar 

  2. C. Damgé, M. Aprahamian, G. Balboni, A. Hoeltzel, V. Andrieu, J. and P. Devissaguet. Polyalkylcyanoacrilate nanocapsules increase the intestinal absorption of a lipophilic drug. Int. J. Pharm. 36:121–125 (1987).

    Google Scholar 

  3. J. Kreuter, U. Muller, and K. Munz. Quantitative and microautoradiographic study on mouse intestinal distribution of polyalkylcyanoacrylate nanoparticles. Int. J. Pharm. 55:39–45 (1989).

    Google Scholar 

  4. P. Maincent, R. Le Verge, P. Sado, P. Couvreur, J. and P. Devissaguet. Disposition kinetics and oral bioavailability of vincamineloaded polyalkylcyanoacrylate nanoparticles. J. Pharm. Sci. 75:955–958 (1986).

    PubMed  Google Scholar 

  5. M. E. LeFevre, J. W. Vanderhoff, J. A. Laissue, D. and D. Joel. Accumulation of 2 μm latex particles in mouse Peyer's patches during chronic latex feeding. Experientia 34:120–122 (1978).

    PubMed  Google Scholar 

  6. P. Couvreur, L. Grislain, V. Lenaerts, F. Brasseur, P. Guiot, and A. Biernacki. (1986) Biodegradable polymeric nanoparticles as drug carrier for antitumor agent. In: P. Guiot and P. Couvreur (Eds.), Polymeric Nanoparticles and Microspheres. CRC Press, Boca Raton, FL, pp. 27–93.

    Google Scholar 

  7. C. Damgé, C. Michel, M. Aprahamian, P. Couvreur, and J. P. Devissaguet. Nanocapsules as carriers for oral peptide delivery. J. Controll. Rel. 13:233–239 (1990).

    Google Scholar 

  8. J. Kreuter. Peroral administration of nanoparticles. Adv. Drug Del. Rev. 7:71–86 (1991).

    Google Scholar 

  9. A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani. Nanoparticles as carriers for oral peptide absorption: studies on particles uptake and fate. J. Control. Rel. 36:39–46 (1995).

    Google Scholar 

  10. P. U. Jani, G. W. Halbert, J. Langridge, and A. T. Florence. Uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J. Pharm. Pharmacol. 41:809–812 (1989).

    PubMed  Google Scholar 

  11. R. H. Müller, W. Mehenert, J. S. Lucks, C. Schwarz, C. Freitas, and D. Ruhl. Solid lipid nanoparticles (SLN). An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm. 41:62–69 (1995).

    Google Scholar 

  12. A. J. Domb. Long-acting injectable oxytetracycline-liposphere formulation. Int. J. Pharm. 124:271–278 (1995).

    Google Scholar 

  13. K. Westesen, B. Siekmann, and M. H. J. Koch. Investigation on the physical state of lipid nanoparticles by synchroton radiation X-ray diffraction. Int. J. Pharm. 93:189–199 (1993).

    Google Scholar 

  14. R. Cavalli, M. R. Gasco, and S. Morel. Behaviour of timolol incorporated in lipospheres in the presence of a series of phosphate esters. S.T.P. Pharma Science 2:514–518 (1992).

    Google Scholar 

  15. R. Cavalli, D. Aquilano, M. E. Carlotti, and M. R. Gasco. Study by X-ray powder diffraction and differential scanning calorimetry of two model drugs, phenothiazune and nifedipine incorporated into lipid nanoparticles Eur. J. Pharm. Biopharm. 41:329–333 (1995).

    Google Scholar 

  16. R. Cavalli, O. Caputo, and M. R. Gasco. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 89:R9–R12 (1993).

    Google Scholar 

  17. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni, and M. F. Saettone. Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair. Int. J. Pharm. 117:243–245 (1994).

    Google Scholar 

  18. S. Morel, E. Ugazio, R. Cavalli, and M. R. Gasco. Thymopentin in solid lipid nanoparticles. Int. J. Pharm. 132:259–261 (1996).

    Google Scholar 

  19. S. Morel, M. R. Gasco, and R. Cavalli. Incorporation in lipospheres of D-Trp-6 LHRH. Int. J. Pharm. 105:R1–R5 (1994).

    Google Scholar 

  20. D. E. Koppel. Analysis of macromolecular polydispersity in intensity correlation spectroscopy: the methods of cumulants. J. Chem. Phys. 57:4814–4816 (1972).

    Google Scholar 

  21. F. Nakayama and H. Nakagaki. Quantitative determination of bile acids in bile with reversed phase high performance liquid chromatography. J. Chromatogr. 183:287–293 (1980).

    PubMed  Google Scholar 

  22. R. G. Girardet. Surgical techniques for long-term studies of thoracic duct circulation in the rats. J. Applied Phys. 39:682–688 (1975).

    Google Scholar 

  23. J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. M. Tice. Controlled vaccine release in the gut. I. Orally administered biodegradable microspheres target the Peyer's patches associated lymphoid tissues. J. Control. Rel. 11:205–214 (1990).

    Google Scholar 

  24. A. T. Florence. The oral absorbtion of micro-nanopartirculates: neither exceptional nor unusual Pharm. Res. 14:259–266 (1997).

    PubMed  Google Scholar 

  25. W. N. A. Charman and V. J. Stella. Transport of liphophilic molecules by the intestinal lymphatic system. Adv. Drug. Del. Rev. 7:1–14 (1991).

    Google Scholar 

  26. N. Ukida, Y. Maitani, Y. Machida, M. Nakagaki, and T. Nagai. Influence of bile salts on the permeability through the nasal mucosa of rabbits of insulin in comparison with dextran derivatives. Drug. Dev. Ind. Pharm. 17:1625–1634 (1991).

    Google Scholar 

  27. K. Takada, F. Yoshihiro, Y. Hiroshi, and S. Muranishi. Biological and pharmaceutical factors affecting the absorption and lymphatic delivery of Cyclosporin A from gastrointestinal tract. J. Pharmacobio-din. 11:80–87 (1988).

    Google Scholar 

  28. T. Murakami, Y. Sasaki, K. Yamajo, and N. Yata. Effect of bile salts on the rectal absorption of sodium ampicillin in rats. Chem. Pharm. Bull. 32:1948–1955 (1984).

    PubMed  Google Scholar 

  29. A. Yanagawa, T. Iwayama, T. Saotome, Y. Shoji, K. Takano, H. Oka, and Y. Mizushima. J. Microencapsulation 6:161–165 (1989).

    PubMed  Google Scholar 

  30. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Gastrointestinal uptake of biodegradable microparticles.: effect of particles size. Pharm. Res. 13:1838–1845 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bargoni, A., Cavalli, R., Caputo, O. et al. Solid Lipid Nanoparticles in Lymph and Plasma After Duodenal Administration to Rats. Pharm Res 15, 745–750 (1998). https://doi.org/10.1023/A:1011975120776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011975120776

Navigation