Skip to main content
Log in

The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the uptake of biodegradable microparticles in Caco-2 cells.

Methods. Biodegradable microparticles of polylactic polyglycolic acid co-polymer (PLGA 50:50) of mean diameters 0.1 μm, 1 μm, and 10 μm containing bovine serum albumin as a model protein and 6-coumarin as a fluorescent marker were formulated by a multiple emulsion technique. The Caco-2 cell monolayers were incubated with each diameter microparticles (100 μg/ml) for two hours. The microparticle uptake in Caco-2 cells was studied by confocal microscopy and also by quantitating the 6-coumarin content of the microparticles taken up by the cells. The effects of microparticle concentration, and incubation time and temperature on microparticle cell uptake were also studied.

Results. The study demonstrated that the Caco-2 cell microparticle uptake significantly depends upon the microparticle diameter. The 0.1 μm diameter microparticles had 2.5 fold greater uptake on the weight basis than the 1 μm and 6 fold greater than the 10 μm diameter microparticles. Similarly in terms of number the uptake of 0.1 μm diameter microparticles was 2.7 × 103 fold greater than the 1 μm and 6.7 × 106 greater than the 10 μm diameter microparticles. The efficiency of uptake of 0.1 μm diameter microparticles at 100 μg/ml concentration was 41% compared to 15% and 6% for the 1 μm and the 10 μm diameter microparticles, respectively. The Caco-2 cell microparticle (0.1 μm) uptake increased with concentration in the range of 100 μg/ml to 500 μg/ml which then reached a plateau at higher concentration. The uptake of microparticles increased with incubation time, reaching a steady state at two hours. The uptake was greater at an incubation temperature of 37°C compared to at 4°C.

Conclusions. The Caco-2 cell microparticle uptake was microparticle diameter, concentration, and incubation time and temperature dependent. The small diameter microparticles (0.1 μm) had significantly greater uptake compared to larger diameter microparticles. The results thus suggest that the mechanism of uptake of microparticles in Caco-2 cell is particle diameter dependent. Caco-2 cells are used as an in vitro model for gastrointestinal uptake, and therefore the results obtained in these studies could be of significant importance in optimizing the microparticle-based oral drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Kreuter. J. Anat. 189:503–505, 1996.

    Google Scholar 

  2. R. Bodmeier, H. G. Chem, and O. Paeratakul. Pharm. Res. 6:413–417 (1989).

    Google Scholar 

  3. C. Michel, M. Aprahamain, L. Defontaine, P. Couvreur, and C. Damge. J. Pharm. Pharmacol. 43:1–5 (1991).

    Google Scholar 

  4. A. T. Florence, A. M. Hillery, N. Hussain, and P. U. Jani. J. Controlled Release 36:39–46 (1995).

    Google Scholar 

  5. D. Shah and W. C. Shen. J. Pharm. Sci. 85:1306–1311 (1996).

    Google Scholar 

  6. P. Maincent, R. Le Verge, P. A. Sado, P. Couvreur, and J. P. Devissaguet. J. Pharm. Sci. 75:955–958 (1986).

    Google Scholar 

  7. P. A. Kramer and T. Burnstein. Life Sci. 19:515–520 (1976).

    Google Scholar 

  8. O. Strannegard and A. Yurchison. Int. Arch. Allergy 35:579–590 (1969).

    Google Scholar 

  9. J. H. Eldridge, C. J. Hammond, J. A. Muelbroek, J. K. Staas, R. M. Gilley, and T. R. Tice. J. Controlled Release 11:205–214 (1990).

    Google Scholar 

  10. C. A. Gilligan and A. Li Wan Po. Int. J. Pharm. 75:1–24 (1991).

    Google Scholar 

  11. A. Li Wan Po, E. Rogers, M. Shepphard, and E. M. Scott. Adv. Drug. Del. Rev. 18:101–109 (1995).

    Google Scholar 

  12. I. J. Hidalgo and J. B. Li. Adv. Drug. Del. Rev. 22:53–66 (1996).

    Google Scholar 

  13. C.-M. Lehr and V. H. L. Lee. Pharm. Res. 10(12):1796–1799 (1993).

    Google Scholar 

  14. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. Pharm. Res. 7(5):435–451 (1990).

    Google Scholar 

  15. M. P. Desai, V. Labhasetwar, G. L. Amidon, and R. J. Levy. Pharm. Res. 13:1838–1845 (1996).

    Google Scholar 

  16. R. H. Muller. Colloidal Carriers for Controlled Drug Delivery and Targeting CRC Press, Boston, 1991.

    Google Scholar 

  17. V. Labhasetwar, B. Chen, D. W. M. Muller, J. Bonadio, K. Ciftci, K. March, and R. J. Levy. Adv Drug Del Rev. 24:109–120 (1997).

    Google Scholar 

  18. P. Artursson. J. Pharm. Sci. 79(6):476–482 (1990).

    Google Scholar 

  19. D. C. Kim, P. S. Burton, and R. T. Borchardt. Pharm. Res. 10(12):1710–1714 (1993).

    Google Scholar 

  20. P. Artursson and J. Karlsson. Biochem. Biophys. Res. Comm. 175(3):880–885 (1991).

    Google Scholar 

  21. G. F. Beck, W. J. Irwin, P. L. Nicklin, and S. Akhtar. Pharm. Res. 13(7):1028–1036 (1996).

    Google Scholar 

  22. E. Walter, S. Janich, B. J. Roessler, J. M. Hilfinger, and G. L. Amidon. J. Pharm. Sci. 85:1070–1076 (1996).

    Google Scholar 

  23. A. M. Hillery, P. U. Jani, and A. T. Florence. J. Drug Targetting 2:151–156 (1994).

    Google Scholar 

  24. M. Aprahamian, C. Michel, W. Humbert, J. Devissaguet, and C. Damge. Biol. Cell 61:69–76 (1987).

    Google Scholar 

  25. P. Couvreur and F. Puisieux. Adv. Drug. Del. Rev. 10:141–162 (1993).

    Google Scholar 

  26. J. Kreuter. Adv. Drug. Del. Rev. 7:71–86 (1991).

    Google Scholar 

  27. J. Mastecky, Z. Moldoveanu, M. Novak, W.-Q Huang, R. M. Gilley, J. K. Staas, D. Schafer, and R. W. Compans. J. Controlled Release 28:131–141 (1994).

    Google Scholar 

  28. M. Manganaro, P. L. Ogra, and P. B. Ernst. Int. Arch. Allerg. Immuno. 103:223–233 (1994).

    Google Scholar 

  29. K. E. Carr, R. A. Hazzard, S. Reid, and G. M. Hodges. Pharm. Res. 13:1205–1209 (1996).

    Google Scholar 

  30. T. Uchida and S. Goto. Bio. Pharm. Bull. 17:1272–1276 (1994).

    Google Scholar 

  31. T. H. Ermak, E. P. Dougherty, H. R. Bhagat, Z. Kabok, and J. Pappo. Cell Tissue Res. 279:433–436 (1995).

    Google Scholar 

  32. J. C. Leroux, R. M. Cozens, J. L. Roesel, B. Galli, E. Doelker, and R. Gurny. Pharm. Res. 13:485–487 (1996).

    Google Scholar 

  33. A. M. Hillery, I. Toth, and A. T. Florence. J. Controlled Release 42:65–73 (1996).

    Google Scholar 

  34. H. Sato, Y. Sugiyama, A. Tsuji, and I. Horikoshai. Adv. Drug. Del. Rev. 19:445–467 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, M.P., Labhasetwar, V., Walter, E. et al. The Mechanism of Uptake of Biodegradable Microparticles in Caco-2 Cells Is Size Dependent. Pharm Res 14, 1568–1573 (1997). https://doi.org/10.1023/A:1012126301290

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012126301290

Navigation