Skip to main content
Log in

Almost Sure Weak Convergence for the Generalized Orthogonal Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The generalized orthogonal ensemble satisfies isoperimetric inequalities analogous to the Gaussian isoperimetric inequality, and an analogue of Wigner's law. Let v be a continuous and even real function such that V(X)=tracev(X)/n defines a uniformly p-convex function on the real symmetric n×n matrices X for some p≥2. Then ν(dX)=e V(X) dX/Z satisfies deviation and transportation inequalities analogous to those satisfied by Gaussian measure(6, 27), but for the Schatten c p norm. The map, that associates to each XM s n (ℝ) its ordered eigenvalue sequence, induces from ν a measure which satisfies similar inequalities. It follows from such concentration inequalities that the empirical distribution of eigenvalues converges weakly almost surely to some non-random compactly supported probability distribution as n→∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Bakry and M. Emery, Diffusions hypercontractives, in Séminaire de Probabilités XIX, J. Azéma et M. Yor, eds., Lecture Notes in Mathematics, Vol. 1123, pp. 177–206 (Springer, Berlin, 1985).

    Google Scholar 

  2. K. Ball, E. A. Carlen, and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115:463–482 (1994).

    Google Scholar 

  3. G. Blower, The Gaussian isoperimetric inequality and transportation, Submitted to Positivity.

  4. S. G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic Sobolev inequalities, J. Funct. Anal. 163:1–28 (1999).

    Google Scholar 

  5. S. G. Bobkov and M. Ledoux, From Brunn-Minkowski to Brescamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal. 10:1028–1052 (2000).

    Google Scholar 

  6. C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30:207–216 (1975).

    Google Scholar 

  7. A. Boutet de Monvel, L. Pastur, and M. Shcherbina, On the statistical mechanics approach to random matrix theory: integrated density of states, J. Stat. Phys. 79:585–611 (1995).

    Google Scholar 

  8. E. Brézin, C. Itzykson, G. Parisi, and J.B. Zuber, Planar diagrams, Comm. Math. Phys. 59:35–81 (1978).

    Google Scholar 

  9. P. Deift, T. Kreicherbauer, K. T. R. McLaughlin, S. Venakides, and X. Zhou, Asymptotics for polynomials orthogonal with respect to varying exponential weights, Internat. Math. Res. Notices 16:759–782 (1997).

    Google Scholar 

  10. J.-D. Deuschel and D. W. Stroock, Hypercontractivity and spectral gap of symmetric diffusions with applications to the stochastic Ising models, J. Funct. Anal. 92:30–48 (1990).

    Google Scholar 

  11. P. Deift, T. Kreicherbauer, K. T. R. McLaughlin, S. Venakides, and X. Zhou, Asymptotics for polynomials orthogonal with respect to varying exponential weights, Internat. Math. Res. Notices 16:759–782 (1997).

    Google Scholar 

  12. R. M. Dudley, Real Analysis and Probability (Wadsworth & Brooks/Cole, Pacific Grove, 1989).

    Google Scholar 

  13. R. S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985).

    Google Scholar 

  14. L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in Lecture Notes in Math., Vol. 1563, pp. 55–88 (Springer, Berlin, 1993).

    Google Scholar 

  15. J. S. Groves, A study of Stochastic processes in Banach space, Ph.D. thesis (Lancaster University, 2000).

  16. U. Haagerup and S. Thorbjørnsen, Random matrices with complex Gaussian entries, Preprint. (Odense, 1998).

  17. K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices, Duke Math. J. 91:151–204 (1998).

    Google Scholar 

  18. M. Kac, On some connections between probability theory and differential and integral equations, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley, 1951), pp. 189–215.

    Google Scholar 

  19. M. K.-H. Kiessling and H. Spohn, A note on the eigenvalue density of random matrices, Comm. Math. Phys. 199:683–695 (1999).

    Google Scholar 

  20. M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities, in Séminaire de Probabilités XXXIII, Lecture Notes in Math., Vol. 1709, pp. 120–216 (Springer, Berlin, 1999).

    Google Scholar 

  21. M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, San Diego, 1991).

    Google Scholar 

  22. V. D. Milman and G. Schechtman, Asymptotic theory of finite dimensional normed spaces, Springer Lecture Notes in Math., Vol. 1200, (Springer, Berlin, 1986).

    Google Scholar 

  23. N. I. Muskhelishvili, Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics (P. Noordhoff N.V., Groningen, 1953).

    Google Scholar 

  24. F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. 173:361–400 (2000).

    Google Scholar 

  25. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry (Cambridge University Press, 1989).

  26. M. Reed and B. Simon, Methods of Modern Mathematical Physics: Volume 4, Analysis of Operators (Academic Press, New York, 1978).

    Google Scholar 

  27. B. Simon, Trace Ideals and Their Applications (Cambridge University Press, 1979).

  28. M. Talagrand, Transportation cost for Gaussian and other product measures, Geom. Funct. Anal. 6:587–600 (1996).

    Google Scholar 

  29. N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes S p (1 ≤ p < ∞) Studia Math. 50:163–182 (1974).

    Google Scholar 

  30. N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals (Longman, Harlow Essex, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blower, G. Almost Sure Weak Convergence for the Generalized Orthogonal Ensemble. Journal of Statistical Physics 105, 309–335 (2001). https://doi.org/10.1023/A:1012294429641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012294429641

Navigation