Skip to main content
Log in

Regulation of the Ecto-Nucleotidase Pathway in Rat Hippocampal Nerve Terminals

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ecto-nucleotidases play a pivotal role in terminating the signalling via ATP and in producing adenosine, a neuromodulator in the nervous system. We have now investigated the pattern of adenosine formation with different concentrations of extracellular ATP in rat hippocampal nerve terminals. It was found that adenosine formation is delayed with increasing concentrations of ATP. Also, the rate of adenosine formation increased sharply when the extracellular concentrations of ATP + ADP decrease below 5 μM, indicating that ATP/ADP feed-forwardly inhibit ecto-5′-nucleotidase allowing a burst-like formation of adenosine possibly designed to activate facilitatory A2A receptors. Initial rate measurements of ecto-5′-nucleotidase in hippocampal nerve terminals, using IMP as substrate, showed that ATP and ADP are competitive inhibitors (apparent Ki of 14 and 4 μM). In contrast, in hippocampal immunopurified cholinergic nerve terminals, a burst-like formation of adenosine is not apparent, suggesting that channelling processes may overcome the feed-forward inhibition of ecto-5′-nucleotidase, thus favouring A1 receptor activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ralevic, V. and Burnstock, G. 1998. Receptors for purines and pyrimidines. Pharmacol. Rev. 50:413–492.

    Google Scholar 

  2. Zimmermann, H. 1994. Signaling via ATP in the nervous system. Trends Neurosci. 17:420–426.

    Google Scholar 

  3. Silinsky, E. M., Hirsh, J. K., Searl, T. J., Redman, R. S., and Watanabe, M. 1999. Quantal ATP release from motor nerve endings and its role in neurally mediated depression. Prog. Brain Res. 120:145–158.

    Google Scholar 

  4. Santos, P. F., Caramelo, O. L., Carvalho, A. P., and Duarte, C. B. 1999. Characterization of ATP release from cultures enriched in cholinergic-like amacrine neurons. J. Neurobiol. 41:340–348.

    Google Scholar 

  5. Cunha, R. A., Vizi, E. S., Sebastião, A. M., and Ribeiro, J. A. 1996. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high-but not low-frequency stimulation of rat hippocampal slices. J. Neurochem. 67: 1281–1287.

    Google Scholar 

  6. Wieraszko, A., Goldsmith, G., and Seyfried, T. N. 1989. Stimulation-dependent release of adenosine triphosphate from hippocampal slices. Brain Res. 485:244–250.

    Google Scholar 

  7. Vizi, E. S., Sperlagh, B., and Baranyi, M. 1992. Evidence that ATP released from the postsynaptic site by noradrenaline is involved in mechanical responses of guinea-pig vas deferens: Cascade of transmission. Neuroscience 50:455–465.

    Google Scholar 

  8. Queiróz, G., Gebicke-Haerter, P. J., Schobert, A., Starke, K., and von Kügelgen, I. 1997. Release of ATP from cultured astrocytes elicited by glutamate receptor activation. Neuroscience 78:1203–1208.

    Google Scholar 

  9. Homolya, L., Steinberg, T. H., and Boucher, R. C. 2000. Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J. Cell. Biol. 18:1349–1360.

    Google Scholar 

  10. Yegutkin, G., Bodin, P., and Burnstock, G. 2000. Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5′-nucleotidase along with endogenous ATP from vascular endothelial cells. Br. J. Pharmacol. 129:921–926.

    Google Scholar 

  11. Edwards, F. A., Gibb, A. J., and Colquhoun, D. 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147.

    Google Scholar 

  12. Cunha, R. A. and Ribeiro, J. A. 2000. ATP as a presynaptic modulator. Life Sci. 68:119–137.

    Google Scholar 

  13. Fields, R. D. and Stevens, B. 2000. ATP: An extracellular signalling molecule between neurons and glia. Trends Neurosci. 23:625–633.

    Google Scholar 

  14. Cunha, R. A. 2001. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: Different roles, different sources and different receptors. Neurochem. Int. 38: 107–125.

    Google Scholar 

  15. Greene, R. W. and Haas, H. L. 1991. The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol. 36:329–341.

    Google Scholar 

  16. de Mendonça, A., Sebastião, A. M., and Ribeiro, J. A. 1995. Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. NeuroReport 6:1097–1100.

    Google Scholar 

  17. Correia-de-Sá, P. and Ribeiro, J. A. 1994. Tonic adenosine A2A receptor activation modulates nicotinic autoreceptor function at the rat neuromuscular junction. Eur. J. Pharmacol. 271: 349–355.

    Google Scholar 

  18. Cunha, R. A. 1997. Release of ATP and adenosine and formation of extracellular adenosine in the hippocampus. Pages 135–142, in Okada, Y. (ed.), The role of Adenosine in the Nervous System, Elsevier, Amsterdam.

    Google Scholar 

  19. Cunha, R. A., Correia-de-Sá, P., Sebastião, A. M., and Ribeiro, J. A. 1996. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. Br. J. Pharmacol. 119:253–260.

    Google Scholar 

  20. Cunha, R. A., Almeida, T., and Ribeiro, J. A. 2001. Parallel modification of adenosine extracellular metabolism and modulatory action in the hippocampus of aged rats. J. Neurochem. 76:372–382.

    Google Scholar 

  21. Zimmermann, H., Dowdall, M. J., and Lane, D. A. 1979. Purine salvage at cholinergic nerve endings of the Torpedo electric organ: The central role of adenosine. Neuroscience 4:979–993.

    Google Scholar 

  22. Zimmermann, H. 1999. Two novel families of ectonucleotidases: Molecular structures, catalytic properties and a search for function. Trends Pharmacol. 20:231–236.

    Google Scholar 

  23. Kegel, B., Braun, N., Heine, P., Maliszewski, C. R., and Zimmermann, H. 1997. An ecto-ATPase and an ecto-ATP diphosphohydrolase are expressed in rat brain. Neuropharmacol. 36: 1189–1200.

    Google Scholar 

  24. James, S. and Richardson, P. J. 1993. Production of adenosine from extracellular ATP at striatal cholinergic synapse. J. Neurochem. 60:219–227.

    Google Scholar 

  25. Naito, Y. and Lowenstein, J. M. 1985. 58-Nucleotidase from rat heart membranes. Inhibition by adenine nucleotides and related compounds. Biochem. J. 226:645–651.

    Google Scholar 

  26. Correia-de-Sá, P., Timóteo, M. A., and Ribeiro, J. A. 1996. Presynaptic A1 inhibitory/A2A facilitatory adenosine receptor activation balance depends on motor nerve stimulation paradigm at the rat hemidiaphragm. J. Neurophysiol. 76:3910–3919.

    Google Scholar 

  27. Cunha, R. A. and Sebastião, A. M. 1993. Adenosine and adenine nucleotides are independently released from both the nerve terminals and the muscle fibres upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers Arch. Eur. J. Physiol. 424:503–510.

    Google Scholar 

  28. MacDonald, W. F. and White T. D. 1985. Nature of extrasynaptosomal accumulation of endogenous adenosine evoked by K+ and veratridine. J. Neurochem. 45:791–797.

    Google Scholar 

  29. Ribeiro, J. A. and Sebastião, A. M. 1987. On the role, inactivation and origin of endogenous adenosine at the frog neuromuscular junction. J. Physiol. 384:571–585.

    Google Scholar 

  30. Richardson, P. J., Brown, S. J., Bailyes, E. M., and Luzio, J. P. 1987. Ectoenzymes control adenosine modulation of immunoisolated cholinergic synapses. Nature 327:232–234.

    Google Scholar 

  31. Redman, R. S. and Silinsky, E. M. 1994. ATP released together with acetylcholine as the mediator of neuromuscular depression at frog motor nerve endings. J. Physiol. 477:117–127.

    Google Scholar 

  32. Cunha, R. A., Sebastião, A. M., and Ribeiro, J. A. 1994. Purinergic modulation of the evoked release of [3H]acetylcholine from the hippocampus and cerebral cortex of the rat: Role of the ecto-nucleotidases. Eur. J. Neurosci. 6:33–42.

    Google Scholar 

  33. Meghji, P., Pearson, J. D., and Slakey, L. L. 1995. Kinetics of extracellular ATP hydrolysis by microvascular endothelial cells from rat heart. Biochem. J. 308:725–731.

    Google Scholar 

  34. Cunha, R. A., Sebastião, A. M., and Ribeiro, J. A. 1998. Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J. Neurosci. 18:1987–1995.

    Google Scholar 

  35. Cunha, R. A., Sebastião, A. M., and Ribeiro, J. A. 1992. Ecto-5′-nucleotidase is associated with cholinergic nerve terminals in the hippocampus but not in the cerebral cortex of the rat. J. Neurochem. 59:657–666.

    Google Scholar 

  36. Richardson, P. J., Siddle, K., and Luzio, J. P. 1984. Immunoaffinity purification of intact, metabolically active, cholinergic nerve terminals from mammalian brain. Biochem. J. 210:647–654.

    Google Scholar 

  37. Cunha, R. A., Sebastião, A. M., and Ribeiro, J. A. 1989. Separation of adenosine triphosphate and its degradation products in innervated muscle of the frog by reversed phase high-performance liquid chromatography. Chromatographia 28:610–612.

    Google Scholar 

  38. Dixon, M. 1972. The graphical determination of Km and Ki. Biochem. J. 129:197–202.

    Google Scholar 

  39. Cornish-Bowden, A. 1974. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitons. Biochem. J. 137:143–144.

    Google Scholar 

  40. Zimmermann, H. 1996. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog. Neurobiol. 49:589–618.

    Google Scholar 

  41. Gordon, E. L., Pearson, J. D., Dickinson, E. S., Moreau, D., and Slakey, L. L. 1989. The hydrolysis of extracellular adenine nucleotides by arterial smooth muscle cells: Regulation of adenosine production at the cell surface. J. Biol. Chem. 264: 18986–18992.

    Google Scholar 

  42. Gordon, E. L., Pearson, J. D., and Slakey, L. L. 1986. The hydrolysis of extracellular adenine nucleotides by cultured endothelial cells from pig aorta: Feed-forward inhibition of adenosine production at the cell surface. J. Biol. Chem. 261:15496–15504.

    Google Scholar 

  43. Meghji, P., Pearson, J. D., and Slakey, L. L. 1992. Regulation of extracellular adenosine production by ectonucleotidases of adult rat ventricular myocytes. Am. J. Physiol. 263:H40–H47.

    Google Scholar 

  44. Koziak, K., Kaczmarek, E., Kittel, A., Sevigny, J., Blusztajn, J. K., Schulte, A. M., Esch, J., Imai, M., Guckelberger, O., Goepfert, C., Qawi, I., and Robson, S. C. 2000. Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveolae. J. Biol. Chem. 275:2057–2062.

    Google Scholar 

  45. Battastini, A. M. O., Rocha, J. B. T., Barcellos, C. K., Dias, R. D., and Sarkis, J. J. F. 1991. Characterization of an ATP diphosphohydrolase (EC 3.6.1.5) in synaptosomes from cerebral cortex of adult rats. Neurochem. Res. 16:1303–1310.

    Google Scholar 

  46. Battastini, A. M., Oliveira, E. M., Moreira, C. M., Bonan, C. D., Sarkis, J. J., and Dias, R. D. 1995. Solubilization and characterization of an ATP diphosphohydrolase (EC 3.6.1.5) from rat brain synaptic plasma membranes. Biochem. Mol. Biol. Int. 37:209–219.

    Google Scholar 

  47. Wink, M. R., Lenz, G., Rodnight, R., Sarkis, J. J., and Battastini, A. M. 2000. Identification of brain ecto-apyrase as a phosphoprotein. Mol. Cell. Biochem. 213:11–16.

    Google Scholar 

  48. Cunha, R. A. and Sebastião, A. M. 1991. Extracellular metabolism of adenine nucleotides and adenosine in the innervated skeletal muscle of the frog. Eur. J. Pharmacol. 197:83–92.

    Google Scholar 

  49. Cunha, R. A., Magalhães-Cardoso, M. T., and Ribeiro, J. A. 1997. Extracellular metabolism of adenine nucleotides and adenosine at the rat innervated hemidiaphragm. Pharmacol. Toxicol. 81 (Suppl. 1):40.

    Google Scholar 

  50. Nagy, A. K., Shuster, T. A., and Delgato-Escueta, A. V. 1989. Rat brain synaptosomal ATP:AMP-phosphotransferase activity. J. Neurochem. 53:1166–1172.

    Google Scholar 

  51. Terrian, D. M., Hernandez, P. G., Rea, M. A., and Peters, R. I. 1989. ATP release, adenosine formation, and modulation of dynorphin and glutamic acid release by adenosine analogues in rat hippocampal mossy fiber synaptosomes. J. Neurochem. 53: 1390–1399.

    Google Scholar 

  52. Lazarowski, E. R., Homolya, L., Boucher, R. C., and Harden, T. K. 1997. Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J. Biol. Chem. 272:20402–20407.

    Google Scholar 

  53. Todorov, L. D., Mihaylova-Todorova, S., Westfall, T. D., Sneddon, P., Kennedy, C., Bjur, R. A., and Westfall, D. P. 1997. Neuronal release of soluble nucleotidases and their role in neurotransmitter inactivation. Nature 387:76–79.

    Google Scholar 

  54. Burger, R. M. and Lowenstein, J. M. 1975. 5′-Nucleotidase from smooth muscle of small intestine and from brain: Inhibition by nucleotides. Biochemistry 14:2362–2366.

    Google Scholar 

  55. Cunha, R. A., Brendel, P., Zimmermann, H., and Ribeiro, J. A. 2000. Immunologically distinct isoforms of ecto-5′-nucleoti-dase in nerve terminals of different areas of the rat hippocampus. J. Neurochem. 74:334–338.

    Google Scholar 

  56. Zimmermann, H. 1992. 5′-nucleotidase: Molecular structure and functional aspects. Biochem. J. 285:345–365.

    Google Scholar 

  57. Grondal, E. J. M. and Zimmermann, H. 1987. Purification, characterization and cellular localization of 5′-nucleotidase from Torpedo electric organ. Biochem. J. 245:805–810.

    Google Scholar 

  58. Lai, K. M. and Wong, P. C. L. 1991. Metabolism of extracellular adenine nucleotides by cultured rat brain astrocytes. J. Neurochem. 57:1510–1515.

    Google Scholar 

  59. Torres, M., Pintor, J., and Miras-Portugal, M. T. 1990. Presence of ecto-nucleotidases in cultured chromaffin cells. Hydrolysis of extracellular adenine nucleotides. Arch. Biochem. Biophys. 279:37–44.

    Google Scholar 

  60. Zimmermann, H., Grondal, E. J. M., and Keller, F. 1986. Hydrolysis of ATP and formation of adenosine at the surface of cholinergic nerve endings. Pages 35–48, in Kreutzberg, G. W., Reddington, M., and Zimmermann, H. (eds.), Cellular Biology of Ectoenzymes. Springer-Verlag, Berlin.

    Google Scholar 

  61. Nagy, A. 1986. Enzymatic characteristics and possible role of synaptosomal ecto-adenosine triphosphatase from mammalian brain. Pages 49–59, in Kreutzberg, G. W., Reddington, M., and Zimmermann, H. (eds.), Cellular Biology of Ectoenzymes. Springer Verlag, Berlin.

    Google Scholar 

  62. Mitchell, J. B., Lupica, C. R., and Dunwiddie, T. V. 1993. Activity-dependent release of endogenous adenosine modulates synaptic responses in the rat hippocampus. J. Neurosci. 13: 3439–3447.

    Google Scholar 

  63. Dunwiddie, T. V., Diao, L., and Proctor, W. R. 1997. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J. Neurosci. 17:7673–7682.

    Google Scholar 

  64. de Mendonça, A. and Ribeiro, J. A. 1997. Adenosine and neuronal plasticity. Life Sci. 60:245–251.

    Google Scholar 

  65. Lopes, L. V., Cunha, R. A., and Ribeiro, J. A. 1999. Crosstalk between A1 and A2A adenosine receptors in the hippocampus and cortex of young adult and old rats. J. Neurophysiol. 82:3196–3203.

    Google Scholar 

  66. Cornish-Bowden, A. J. 1972. Analysis of progress curves in enzyme kinetics. Biochem. J. 130:637–639.

    Google Scholar 

  67. Liley, A. W. and North, K. A. K. 1953. An electrical investigation of effects of repetitive stimulation on mammalian neuromuscular junction. J. Neurophysiol. 16:509–527.

    Google Scholar 

  68. Cunha, R. A., Johansson, B., Fredholm, B. B., Ribeiro, J. A., and Sebastião, A. M. 1995. Adenosine A2A receptors stimulate acetylcholine release from nerve terminals of the rat hippocampus. Neurosci. Lett. 196:41–44.

    Google Scholar 

  69. Cunha, R. A., Milusheva, E., Vizi, E. S., Ribeiro, J. A., and Sebastião, A. M. 1994. Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H]acetylcholine release from different areas of the rat hippocampus. J. Neurochem. 63:207–214.

    Google Scholar 

  70. Jin, S. and Fredholm, B. B. 1997. Adenosine A2A receptor stimulation increases release of acetylcholine from rat hippocampus but not striatum, and does not affect catecholamine release. Naunyn Schmiedeberg's Arch. Pharmacol. 355:48–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cunha, R.A. Regulation of the Ecto-Nucleotidase Pathway in Rat Hippocampal Nerve Terminals. Neurochem Res 26, 979–991 (2001). https://doi.org/10.1023/A:1012392719601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012392719601

Navigation