Skip to main content
Log in

Characterization of ATI, TK and IFN-α/βR Genes in the Genome of the BeAn 58058 Virus, a Naturally Attenuated Wild Orthopoxvirus

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The lack of knowledge about the natural host of Vaccinia virus (VV) along with the description of human infections caused by poxviruses after smallpox eradication has increased the need to characterize poxviruses isolated from the wild. Moreover, in the past years poxviruses have been widely studied as potential vaccination tools, with the discovery of several genes implicated in the evasion of the host immune response involved in virus pathogenesis. Among them, an Interferon (IFN)-binding protein was identified in the supernatant of VV strain WR infected cells coded by the B18R gene. It was shown that many other Orthopoxviruses also encode and express this soluble receptor although some VV strains such as Lister and modified Ankara, which were less reactogenic vaccines, do not. The BeAn 58058 virus (BAV) has been recently characterized and proposed to be an Orthopoxvirus. BAV was also shown to be less virulent in animal models than VV Lister. Here we report the identification of an IFN-α/βR gene in the BAV genome with 99% of sequence identity with the VVWR B18R gene. The identified gene encodes a B18R-like IFN binding protein as demonstrated by its capacity to inhibit the IFN-mediated protection of VERO cells against EMC virus. In order to better characterize the virus we have searched for the A type inclusion body (ATI) gene currently used in the classification of Orthopoxviruses but did not detect it in the BAV genome. We have also sequenced the BAV thymidine kinase (TK) gene, a poxvirus-conserved gene, which, as expected, showed high homology with the TK gene of other poxviruses. Phylogenetic trees were constructed based on sequences of the IFN-α/βR and TK genes from several poxviruses and in both cases BAV was placed in the same cluster as other VV strains. These observations strengthened the hypothesis that this virus is a variant of the VV vaccine used in Brazil. However the explanation for the BAV lack of virulence remains to be discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutter G. and Moss B., Proc Natl Acad Sci USA 89, 10847-10851, 1992.

    Google Scholar 

  2. Bender B.S., Rowe C.A., Taylor F., Wyatt L.S., Moss B., and Small P.A., J Virol 70, 6418-6424, 1996.

    Google Scholar 

  3. Wyatt L.S., Shors S.T., Murphy B.R., and Moss B., Vaccine 14, 1451-1458, 1996.

    Google Scholar 

  4. Wyatt L.S., Carrol M.W., Czerny C.P., Merchlinsky M., Sisler J.R., and Moss B., Virology 251, 334-342, 1998.

    Google Scholar 

  5. Baxby D., Arch Virol 55, 169-179, 1977.

    Google Scholar 

  6. Baxby D., Gaskell R.M., Gaskell C.J., and Bennet M., Lancet 2, 850-851, 1986.

    Google Scholar 

  7. Boulanger D., Crouch A., Brochier B., Bennet M., Clèment J., Gaskell R.M., Baxby D., and Pastoret P.-P., Vet Rec 138, 247-249, 1986.

    Google Scholar 

  8. DaFonseca F.G., Lanna M.C.S., Campos M.A.S., Kitajima E.W., Peres J.N., Golgher R.R., Ferreira P.C.P., and Kroon E.G., Arch Virol 143, 1171-1186, 1998.

    Google Scholar 

  9. Damaso R.A., Esposito J.J., Condit R.C., and Moussatché, N. Virology 277, 439-449, 2000.

    Google Scholar 

  10. Buller R.M.E. and Palumbo G.J., Microbiol Rev 55, 80-122, 1991.

    Google Scholar 

  11. Moss B., Ann Rev Biochem 59, 561-568, 1990.

    Google Scholar 

  12. Black E.M. and Hruby E.D., J Biol Chem 267, 9743-9748, 1992.

    Google Scholar 

  13. Meyer H., Roop S.L., and Esposito J.J., J Virol Methods 64, 217-221, 1997.

    Google Scholar 

  14. Smith G.L., Symons J.A., Khanna A., Vanderplasschen A.E., and Alcamí A., Immunol Rev 159, 137-154, 1997.

    Google Scholar 

  15. Smith G.L., Curr Opin Immunol 8, 467-471, 1996.

    Google Scholar 

  16. Colamonici O.R., Domanski P., Sweitzer S.M., Larner A.E., and Buller R.M.L., J Biol Chem 270, 15974-15978, 1995.

    Google Scholar 

  17. Symons J.A., Alcamí A., and Smith G.L., Cell 81, 551-560, 1995.

    Google Scholar 

  18. Alcamí A., Symons J.A., and Smith G.L., J Virol 74, 11230-11239, 2000.

    Google Scholar 

  19. Blanchard T.J., Alcamí A., Andrea P., and Smith G.L., J Gen Virol 79, 1159-1167, 1998.

    Google Scholar 

  20. Woodal J.P., Virus Research in Amazonia. In Simpósio Sobre A Biota Amazonica. Belém, 31-63, 1967.

  21. Ueda Y., Dumbell K.R., Tsuruhara T., and Tagaya I., J Gen Virol 40, 236-276, 1978.

    Google Scholar 

  22. Esposito J.J., Palmer E.L., Borden E.C., Harrison A.K., Obijeski J.F., and Murphy F.A., J Gen Virol 47, 37-46, 1980.

    Google Scholar 

  23. Campos M.A.S., and Kroon E.G., Rev Microbiol 24, 104-110, 1993.

    Google Scholar 

  24. Joklik W.K., Virology 18, 9-18, 1962.

    Google Scholar 

  25. Ferreira P.C.P., Peixoto M.L.P., Silva M.A.N., and Golgher R.R., J Clin Microbiol 9, 471-475, 1979.

    Google Scholar 

  26. Esposito J.J. and Knight J.C., Virology 143, 230-251, 1985.

    Google Scholar 

  27. Church G.M. and Gilbert W., Proc Natl Acad Sci USA 81, 1991-1995, 1984.

    Google Scholar 

  28. Innis M.A. and Gelfano D.H. (ed.) Optimization of Pcrs Academic Press, New York, 1990, pp. 3-12.

    Google Scholar 

  29. Stüber D., Matile H., and Garotta G., Immunol Methods IV, 121-152, 1990.

    Google Scholar 

  30. Chomczynski P. and Sacchi N., Anal Biochem 12, 156-159, 1987.

    Google Scholar 

  31. Sambrook J., Fritsch E.F., and Maniatis T., Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 1989.

    Google Scholar 

  32. Sanger F., Nicklen S., and Coulson A.R., Proc Natl Acad Sci USA 74, 5463, 1977.

    Google Scholar 

  33. Altschul S.F., Gish W., Miller W., Myers E.W., and Lipman D.J., J Mol Biol 215, 403-410, 1990.

    Google Scholar 

  34. Van Der Peer Y. and Wachter R., Comput Applic Biosci 10, 569-570, 1994.

    Google Scholar 

  35. Amano H., Ueda Y., and Tagaya I., J Gen Virol 44, 265-269, 1979.

    Google Scholar 

  36. Alcamí A., and Smith G.L., Immunol Today 16, 474-478, 1995.

    Google Scholar 

  37. Miller C.G., Shchelkunov S.N., and Kotwal G.J., Virology 229, 6-133, 1997.

    Google Scholar 

  38. Nam J.H., Wyatt L., Chae S.L., Cho H.W., Park Y.K., and Moss B., Vaccine 17, 261-268, 1998.

    Google Scholar 

  39. Wyatt L., Whitehead S.S., Venanzi K.A., Murphy B.R., and Moss B., Vaccine 18, 2-397, 2000.

    Google Scholar 

  40. Ourmanov I., Brown C.R., Moss B., Carrol M., Wyatt L., Pletnev L., Goldstein S., Venzon D., and Hirsch V., J Virol 74, 40-2751, 2000.

    Google Scholar 

  41. Mayr A., Hochstein-Mintzel V., and Stickl H., Infection 3, 6-16, 1975.

    Google Scholar 

  42. Funahashi S., Sato T., and Shida H., J Gen Virol 69, 35-47, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marques, J.T., de Souza Trindade, G., Guimaraes da Fonseca, F. et al. Characterization of ATI, TK and IFN-α/βR Genes in the Genome of the BeAn 58058 Virus, a Naturally Attenuated Wild Orthopoxvirus. Virus Genes 23, 291–301 (2001). https://doi.org/10.1023/A:1012521322845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012521322845

Navigation