Skip to main content
Log in

Clays and clay minerals: The firing process

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

57Fe Mössbauer spectroscopy reveals changes in iron valence and iron site geometry when clays and clay minerals are heated, and allows a distinction to be made between paramagnetic and magnetically ordered phases. Mössbauer spectra can thus reveal the extent of iron retention in silicate structures upon heating, the identity of iron oxides initially present or formed during the heating process and their transformations, and the character of the atmosphere under which heating was carried out. This makes Mössbauer spectroscopy the most effective tool for the characterization of changes induced by heating phyllosilicates and iron oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Guggenheim and R.T. Martin, Clay Miner. 30 (1995) 257; Clays Clay Miner. 43 (1995) 255.

    Google Scholar 

  2. G.W. Brindley, in: Proc. of the Internat. Clay Conf. (1975) (Applied Publishing, Wilmette, IL, 1975) p. 119.

    Google Scholar 

  3. R.M. Hazen, Phys. Chem. Miner. 1 (1977) 83.

    Article  ADS  Google Scholar 

  4. J.M.D. Coey, in: Proc. of the Internat. Conf. on Mössbauer Spectroscopy, eds. A.Z. Hrynkiewicz and J.A. Sawicki, Cracow, Poland, 1975 (Akademia Gorniczo-Hutniczej, 1975) p. 333.

  5. E. Murad and U. Wagner, Neues Jahrb. Miner. Abh. 162 (1991) 281.

    Google Scholar 

  6. E. Murad and U. Wagner, Clay Miner. 29 (1994) 1.

    Google Scholar 

  7. U. Wagner, W. Knorr, A. Forster, E. Murad, R. Salazar and F.E. Wagner, Hyp. Interact. 41 (1988) 855.

    Article  ADS  Google Scholar 

  8. E. Murad and U. Wagner, Hyp. Interact. 45 (1989) 161.

    Article  ADS  Google Scholar 

  9. E. Murad, Hyp. Interact. 117 (1998) this volume.

  10. S.A.T. Redfern, Clay Miner. 22 (1987) 447.

    Google Scholar 

  11. D.G. Rancourt, P. Tume and A.E. Lalonde, Phys. Chem. Miner. 20 (1993) 276.

    Article  ADS  Google Scholar 

  12. R.L. Frost and A.M. Vassallo, Clays Clay Miner. 44 (1996) 635.

    Google Scholar 

  13. G.W. Brindley and M. Nakahira, J. Am. Ceram. Soc. 42 (1959) 311.

    Article  Google Scholar 

  14. G.W. Brindley and M. Nakahira, J. Am. Ceram. Soc. 42 (1959) 314.

    Article  Google Scholar 

  15. G.W. Brindley and M. Nakahira, J. Am. Ceram. Soc. 42 (1959) 319.

    Article  Google Scholar 

  16. M.C. Gastuche, F. Toussaint, J.J. Fripiat, R. Touilleaux and M. van Meersche, Clay Miner. Bull. 5 (1963) 227.

    Google Scholar 

  17. L. Heller-Kallai and I. Rozenson, Phys. Chem. Miner. 7 (1981) 223.

    Article  ADS  Google Scholar 

  18. T. Watanabe, H. Shimizu, K. Nagasawa, A. Masuda and H. Saito, Clay Miner. 22 (1987) 37.

    Google Scholar 

  19. K.J.D. MacKenzie, Clay Miner. 8 (1969) 151.

    Google Scholar 

  20. C. Janot, H. Gibert and C. Tobias, Bull. Soc. Franç. Minér. Crist. 96 (1973) 281.

    Google Scholar 

  21. A.H. Cuttler, Clay Miner. 15 (1980) 429.

    Google Scholar 

  22. E. Murad, Am. Mineral. 82 (1997) 203.

    Google Scholar 

  23. M. Sayin and M.L. Jackson, Clays Clay Miner. 23 (1975) 437.

    Google Scholar 

  24. J. Środoń and D.D. Eberl, in: Micas, Reviews in Mineralogy, Vol. 13, ed. S.W. Bailey (Mineral. Soc. of America, Washington, DC, 1984 p. 495.

    Google Scholar 

  25. R.E. Grim and W.F. Bradley, Am. Mineral. 33 (1948) 50.

    Google Scholar 

  26. E. Murad and U. Wagner, Clay Miner. 31 (1996) 45.

    Google Scholar 

  27. I.W.M. Brown, K.J.D. MacKenzie and R.H. Meinhold, J. Mater. Sci. 22 (1988) 3265.

    Article  ADS  Google Scholar 

  28. P.J. Michael and W.R. McWhinnie, Polyhedron 8 (1989) 2709.

    Article  Google Scholar 

  29. B.A. Goodman and D.C. Bain, in: Internat. Clay Conf. 1978, eds. M.M. Mortland and V.C. Farmer (Elsevier, Amsterdam, 1979) p. 65.

    Google Scholar 

  30. O.K. Borggaard, H.B. Lindgreen and S. Murup, Clays Clay Miner. 30 (1982) 353.

    Google Scholar 

  31. T.V. Malysheva, G.A. Kazakov and L.M. Satarova, Geochem. Int. 13/5 (1976) 1.

    Google Scholar 

  32. K.J.D. MacKenzie, C.M. Cardile and I.W.M. Brown, Thermochim. Acta 136 (1988) 247.

    Article  Google Scholar 

  33. L. Heller-Kallai and I. Rozenson, Clays Clay Miner. 28 (1980) 355.

    Google Scholar 

  34. K.J.D. MacKenzie, M.E. Bowden and R.M. Berezowski, in: Industrial Applications of the Mössbauer Effect, eds. G.J. Long and J.G. Stevens (Plenum, New York, 1986) p. 547.

    Google Scholar 

  35. E. Murad, Miner. Mag. 43 (1979) 355.

    Google Scholar 

  36. S. Musić and S. Popović, J. Radiochem. Nucl. Chem. Art. 111 (1987) 27.

    Article  Google Scholar 

  37. U. Schwertmann, Thermochim. Acta 78 (1984) 39.

    Article  Google Scholar 

  38. W. Kündig, H. Bömmel, G. Constabaris and R.H. Lindquist, Phys. Rev. 142 (1966) 327.

    Article  ADS  Google Scholar 

  39. E. De Grave, L.H. Bowen, R. Vochten and R.E. Vandenberghe, J. Magn. Magn. Mater. 72 (1988) 141.

    Article  ADS  Google Scholar 

  40. D.G. Chambaere and E. De Grave, Phys. Chem. Miner. 12 (1985) 176.

    Article  ADS  Google Scholar 

  41. I. Dézsi, L. Keszthelyi, D. Kulgawczuk, B. Molnir and N.A. Eissa, Phys. Status Solidi 22 (1967) 617.

    Google Scholar 

  42. J. Šubrt, F. Hanousek, V. Zapletal, J. Lipka and M. Hucl, J. Thermal Anal. 20 (1981) 61.

    Article  Google Scholar 

  43. P.M.A. de Bakker, E. De Grave, R.E. Vandenberghe, L.H. Bowen, R.J. Pollard and R.M. Persoons, Phys. Chem. Miner. 18 (1991) 131.

    Article  ADS  Google Scholar 

  44. C. Janot, M. Chabanel and E. Herzog, Bull. Soc. Franç. Minér. Crist. 91 (1968) 166.

    Google Scholar 

  45. A. Simopoulos, A. Kostikas, I. Sigalas, N.H. Gangas and A. Moukarika, Clays Clay Miner. 23 (1975) 393.

    Google Scholar 

  46. U. Schwertmann, Adv. Soil Sci. 1 (1985) 171.

    Google Scholar 

  47. E. Fritzsch, C. Pietzsch, H. Heegn and H.-J. Huhn, Cryst. Res. Technol. 17 (1982) 1443.

    Google Scholar 

  48. G.J. Muench, S. Arajs and E. Matijević, Phys. Status Solidi A 92 (1985) 187.

    ADS  Google Scholar 

  49. E. De Grave, L.H. Bowen and S.B. Weed, J. Magn. Magn. Mater. 27 (1982) 98.

    Article  ADS  Google Scholar 

  50. M.-Z. Dang, D.G. Rancourt, J.E. Dutrizac, G. Lamarche and R. Provencher, Hyp. Interact. (1998) this issue.

  51. E. Murad, in: Iron in Soils and Clay Minerals, eds. J.W. Stucki, B.A. Goodman and U. Schwertmann (Reidel, Dordrecht/Boston, 1988) p. 309.

    Google Scholar 

  52. U. Schwertmann and H. Fechter, Soil Sci. Soc. Am. J. 46 (1984) 1462.

    Article  Google Scholar 

  53. R.M. Taylor, R.M. McKenzie, A.M. Fordham and G.P. Gillman, in: Soils: An Australian Viewpoint (Division of Soils CSIRO, Melbourne, 1983) p. 309.

    Google Scholar 

  54. R.M. Cornell and U. Schwertmann, The Iron Oxides (Verlag Chemie, Weinheim, 1996) p. 573.

    Google Scholar 

  55. U. Schwertmann and B. Heinemann, Neues Jahrb. Miner. Monatsh. (1959) 174.

  56. A.L. Ulery, R.C. Graham and L.H. Bowen, Soil Sci. Soc. Am. J. 60 (1996) 309.

    Article  Google Scholar 

  57. E. Salvioli-Mariani, A. Bonazzi, I. Ortalli and G. Pedrazzi, Eur. J. Miner. 3 (1991) 147.

    Google Scholar 

  58. E. Eslinger, P. Highsmith, D. Albers and B. DeMayo, Clays Clay Miner. 27 (1979) 327.

    Google Scholar 

  59. F.E. Huggins, in: Analytical Methods for Coal and Coal Products, Vol. 3, ed. C. Kerr (Academic Press, New York, 1979) p. 371.

    Google Scholar 

  60. D.R. Cousins and K.G. Dharmawardena, Nature 223 (1969) 732.

    Article  ADS  Google Scholar 

  61. A. Kostikas, A. Simopoulos and N.H. Gangas, in: Applications of Mössbauer Spectroscopy, ed. R.L. Cohen (Academic Press, New York, 1976) p. 241.

    Google Scholar 

  62. G. Longworth, in: Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, ed. G.J. Long (Plenum, New York, 1984) p. 511.

    Google Scholar 

  63. U. Wagner, R. Gebhard, E. Murad, J. Riederer, I. Shimada, C. Ulbert and F.E. Wagner, in: Ceramic Production in the Prehistoric Andes: Technology, Organization, and Approaches, ed. I. Shimada (Supplement, MASCA Research Paper for Science and Archaeology 14, Philadelphia, PA, 1998) in press.

  64. R. Salazar, U. Wagner, F.E. Wagner and E. Murad, Radiochem. Radioanal. Lett. 59 (1983) 299.

    Google Scholar 

  65. U. Wagner, R. Gebhard, E. Murad, I. Shimada and F.E. Wagner, in: Magnetism of Fine Particles, eds. J.L. Dormann and D. Fiorani (North-Holland, Amsterdam, 1992) p. 381.

    Google Scholar 

  66. O.P. Mehra and M.L. Jackson, Clays Clay Miner. 5 (1960) 317.

    Google Scholar 

  67. E. Murad, Die Identifizierung und Charakterisierung der Eisenoxide im Verwitterungsbereich durch Mössbauerspektroskopie, Habilitations thesis, Technische Universität München (1986).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murad, E., Wagner, U. Clays and clay minerals: The firing process. Hyperfine Interactions 117, 337–356 (1998). https://doi.org/10.1023/A:1012683008035

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012683008035

Keywords

Navigation