Skip to main content
Log in

Sponge–microbe associations and their importance for sponge bioprocess engineering

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In recent years, a large diversity of sponge-microbe associations has been described: sponges can harbour archaea, eubacteria (including cyanobacteria), microalgae, fungi and probably also protozoa. The current paper gives a brief overview of the different types of associations and describes the potential influence of symbiotic micro-organisms on bioprocess design for the biotechnological production of sponge-associated natural compounds. It is concluded that the presence of microsymbionts may further complicate the already tedious development of sponge culturing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Althoff, K., C. Schütt, R. Steffen, R. Batel & W. E. G. Müller, 1998. Evidence for a symbiosis between bacteria of the genus Rhodobacter and the marine sponge Halichondria panicea: harbor also for putatively toxic bacteria? Mar. Biol. 130: 529–536.

    Google Scholar 

  • Amann, R., W. Ludwig & K. H. Schleifer, 1994. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143–169.

    Google Scholar 

  • Bell, A. H., P. R. Bergquist & C. N. Battershill, 1999. Feeding biology of Polymastia croceus. In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 51–56.

  • Bergquist, P. R., 1978. Sponges. Hutchinson, London.

    Google Scholar 

  • Bewley, C. A., N. D. Holland & D. J. Faulkner, 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722.

    Google Scholar 

  • Boyd, K. G., A. Mearns-Spragg, G. Brindley, K. Hatzidimitriou, A. Rennie, M. Bregu, M. O. Hubble & J. G. Burgess, 1998. Antifouling potential of epiphytic marine bacteria from the surfaces of marine algae. In LeGal, Y. & A. Muller-Feuga (eds), Marine Micro-organisms for Industry. Actes de colloques 21, IFREMER, Plouzané: 128–136.

    Google Scholar 

  • Brantley, S. E., T. F. Molinski, C. M. Preston & E. F. DeLong, 1995. Brominated acetylenic fatty acids from Xestospongia sp., a marine sponge-bacteria association. Tetrahedron 51: 7667–7672.

    Google Scholar 

  • Burja, A. M., N. S. Webster, P. T. Murphy & R. T. Hill, 1999. Microbial Symbionts of Great Barrier Reef Sponges. In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 63–75.

  • Cheshire, A. C., C. R. Wilkinson, S. Seddon & G. Westphalen, 1997. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar. Freshwat. Res. 48: 589–599.

    Google Scholar 

  • Custodio, M. R., I. Prokic, R. Steffen, C. Koziol, R. Borojevic, F. Brümmer, M. Nickel & W. E. G. Müller, 1998. Primmorphs generated from dissociated cells of the sponge Suberites domuncula: a model system for studies of cell proliferation and cell death. Mech. Aging Dev. 105: 45–59.

    Google Scholar 

  • Diaz, M. C. & B. B. Ward, 1999. Perspectives on spongecyanobacterial symbioses. In Hooper, J. N. A (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 154.

  • Faulkner, D. J., 2000. Marine natural products. Nat. Prod. Rep. 17: 7–55.

    Google Scholar 

  • Faulkner, D. J., M. K. Harper, C. E. Salomon & E. W. Schmidt, 1999. Localisation of bioactive metabolites in marine sponges. In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 167–173.

  • Fuerst, J. A., R. I. Webb, M. J. Garson, L. Hardy & H. M. Reiswig, 1998. Membrane-bounded nucleoids in microbial symbionts of marine sponges. FEMS Microbil. Lett., 166: 29–34.

    Google Scholar 

  • Garson, M. J., J. E. Thompson, R. M. Larsen, C. N. Battershill, P. T. Murphy & P. R. Bergquist, 1992. Terpenes in sponge cell membranes: cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 27: 378–388.

    Google Scholar 

  • Garson, M. J., M. P. Zimmermann, C. N. Battershill, J. L. Holden & P. T. Murphy, 1994. The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29: 509–516.

    Google Scholar 

  • Garson, M. J., R. J. Clark, R. I. Webb, K. L. Field, R. D. Charan & E. J. McCaffrey, 1999. Ecological role of cytotoxic alkaloids: Haliclona sp. nov., an unusual sponge/ dinoflagellate association. In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 205–213.

  • Hill, M. S., 1996. Symbiotic zooxanthellae enhance boring and growth rates of the tropical sponge Anthosigmella varians forma varians. Mar. Biol. 125: 649–654.

    Google Scholar 

  • Hinde, R., F. Pironet & M. A. Borowitzka, 1994. Isolation of Oscillatoria spongeliae, the filamentous cyanobacterial symbiont of the marine sponge Dysidea herbacea. Mar. Biol. 119: 99–104.

    Google Scholar 

  • Lopez, J.V., P. J. McCarthy, K.E. Janda, R. Willoughby & S. A. Pomponi, 1999. Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera:Demospongiae). In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 329–341.

  • Manz, W., G. Arp, G. Schumann-Kindel, U. Szewzyk & J. Reitner, 2000. Widefield deconvolution epifluorescence microscopy combined with fluorescent in situ hybridization to show the spatial arrangement of bacteria in sponge tissue. J. Microbiol. Meth., 40: 125–134.

    Google Scholar 

  • Mearns-Spragg, A., K. G. Boyd, M. O. Hubble & J. G Burgess, 1997. Anitbiotics from surface associated marine bacteria. In Proceedings of the Fourth Underwater Science Symposium. The Society for Underwater Technology, London: 147–157.

    Google Scholar 

  • Miki, W., K. Kon-ya & S. Mizobuchi, 1996. Biofouling and marine biotechnology: new antifoulants from marine invertebrates. J. Mar. Biotechnol. 4: 117–120.

    Google Scholar 

  • Müller, W. E. G., R. K. Zahn, B. Kurelec, C. Lucu, I. Müller & G. Uhlenbruck, 1981. Lectin, a possible basis for symbiosis between bacteria and sponges. J. Bacteriol. 145: 548–558.

    Google Scholar 

  • Munro, M. H. G., J. W. Blunt, R. J. Lake, M. Litaudon, C. N. Battershill & M. J. Page, 1994. From seabed to sickbed: what are the prospects? In Van Soest, R. W. M., T. M. G. van Kempen & J. C. Braekman (eds), Sponges in Time and Space. A. A. Balkema, Rotterdam: 473–484.

    Google Scholar 

  • Osinga, R., J. Tramper & R. H. Wijffels, 1999. Cultivation of marine sponges: a (re)view. Mar. Biotechnology 1: 509–532.

    Google Scholar 

  • Pomponi, S. A. & R. Willoughby, 1994. Sponge cell culture for production of bioactive metabolites. In Van Soest, R. W. M., T. M. G. Van Kempen & J. C. Braekman (eds), Sponges in Time and Space. A. A. Balkema, Rotterdam: 395–400.

    Google Scholar 

  • Preston, C. M., K.-Y. Wu, T. F. Molinski & E. F. DeLong, 1996. A psychrophilic crenarchaeaon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. natl. Acad. Sci. U.S.A. 93: 6241–6246.

    Google Scholar 

  • Reiswig, H. M., 1971. In situ pumping activities of tropical Demospongiae. Mar. Biol. 9: 38–50.

    Google Scholar 

  • Rinkevich, B., 1999. Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J. Biotechnol. 70: 133–153.

    Google Scholar 

  • Santavy, D. L. & R. R. Colwell, 1990. Comparison of bacterial communities associated with the Caribbean sclerosponge Ceratoporella nicholsoni and ambient seawater. Mar. Ecol. Prog. Ser. 67: 73–82.

    Google Scholar 

  • Santavy, D. L., P. Willenz & R. R. Colwell, 1990. Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbiol. 56: 1750–1762.

    Google Scholar 

  • Schleper, C., E. F. DeLong, C. M. Preston, K.-Y. Wu, R. A. Feldman, G. Deckert & R. V. Swanson, 1998. Environmental Genomics: Chromosomal variation in natural populations of the uncultured psychrophilic arcaheon, Cenarchaeum symbiosum. J. Bacteriol. 180: 5003–5009.

    Google Scholar 

  • Schumann-Kindel, G., M. Bergbauer, W. Manz, U. Szewzyk & J. Reitner, 1997. Aerobic and anaerobic micro-organisms in modern sponges: a possible relationship to fossilization-processes. Facies 36: 268–272.

    Google Scholar 

  • Simpson, T. L., 1984. The Cell Biology of Sponges. Springer, New York.

    Google Scholar 

  • Sponga, F., L. Cavaletti, A. Lazzarini, A. Borghi, I. Ciciliato, D. Losi & F. Marinelli, 1999. Biodiversity and potentials of marine-derived micro-organisms. J. Biotechnol. 70: 65–69.

    Google Scholar 

  • Unson, M. D. & D. J. Faulkner, 1993. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia 49: 349–353.

    Google Scholar 

  • Unson, M. D., N. D. Holland & D. J. Faulkner, 1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119: 1–11.

    Google Scholar 

  • Wilkinson, C. R., 1978a. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar. Biol. 49: 177–185.

    Google Scholar 

  • Wilkinson, C. R., 1978b. Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol. 49: 161–167.

    Google Scholar 

  • Wilkinson, C. R., 1983. Net primary productivity in coral reef sponges. Science 219: 410–412.

    Google Scholar 

  • Wilkinson, C. R., 1987. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4: 135–146.

    Google Scholar 

  • Wilkinson, C. R., 1992. Symbiotic interactions between marine sponges and algae. In Reisser, W. (ed.), Algae and Symbioses: Plants, Animals, Fungi and Viruses, Interactions Explored. Biopress Ltd., Bristol: 112–151.

    Google Scholar 

  • Wilkinson, C. R., R. Summons & E. Evans, 1999. Nitrogen fixation in symbiotic marine sponges: ecological significance and diffi-culties in detection. In Hooper, J. N. A. (ed.), Proceedings 5th International Sponge Symposium. Mem. Qld. Mus. 44: 667–673.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osinga, R., Armstrong, E., Grant Burgess, J. et al. Sponge–microbe associations and their importance for sponge bioprocess engineering. Hydrobiologia 461, 55–62 (2001). https://doi.org/10.1023/A:1012717200362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012717200362

Navigation