Skip to main content
Log in

The Polymorphism of Glycine. Thermochemical and structural aspects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

X-ray, DSC and solution calorimetric investigations were carried out for α-, β- and γ-modifications of glycine. Particular attention was paid to kinetic and thermochemical aspects of γ- → α-phase transition. The temperature of this phase transition turned out to be sensitive to a) conditions under which the crystals of the γ-modification were grown, b) tempering of crystals c) form (geometry) of crystals. Kinetics of this phase transition of single crystals of γ-phase in rhomboedric form can be described by the equation for two-dimension nuclei growth, whereas for crystals of triangle geometry the equation for three dimension growth is valid. On the basis of energy parameters describing growth of α-form in γ- →α-phase transition, the kind of structure defects, which are responsible for this phase transition, was estimated. Taking into account the Δsol H m, the absolute values of the lattice energies of the investigated polymorphs indescending order are follows: γ->α->β-modification. The obtained results are discussed with respect to the peculiarity of the crystal lattice structures, particularly the network of hydrogen bonds. The β-modification of glycine is monotropically related to the other forms, whereas γ-and α-polymorphs are enantiotropically-related phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Bernal, Z. Krist., 78 (1931) 363.

    CAS  Google Scholar 

  2. J. Hengstenberg and F. V. Lenel, Z. Krist., 77 (1931) 424.

    CAS  Google Scholar 

  3. G. Albrecht and R. B. Corey, J. Am. Chem. Soc., 61 (1939) 1087.

    Article  CAS  Google Scholar 

  4. R. E. Marsh, Acta Cryst., 11 (1959) 654.

    Article  Google Scholar 

  5. P. G. Jönsson and Å. Kvick, Acta Cryst., B28 (1972) 1827.

    Google Scholar 

  6. E. Fischer, Ber. Deut. Chem. Ges., 38 (1905) 2917.

    Google Scholar 

  7. Y. Iitaka, Acta Cryst., 13 (1960) 35.

    Article  CAS  Google Scholar 

  8. Y. Iitaka, Proc. Jap. Acad., 30 (1954) 109.

    CAS  Google Scholar 

  9. Y. Iitaka, Acta Cryst., 11 (1958) 225.

    Article  CAS  Google Scholar 

  10. Y. Iitaka, Acta Cryst., 14 (1961) 1.

    Article  CAS  Google Scholar 

  11. Å. Kvick, Acta Cryst., B36 (1980) 115.

    Google Scholar 

  12. V. P. Vasilíev, V. A. Borodin and S. B. Kopnyshev, Russ. J. Phys. Chem., (Engl. Transl.), 65 (1991) 29.

    Google Scholar 

  13. S. N. Ngauv, R. Sabbah and M. Laffitte, Thermochim. Acta, 20 (1977) 371.

    Article  Google Scholar 

  14. T. Tsuzuki, D. O. Harper and H. Hunt, J. Phys. Chem., 62 (1958) 1594.

    Article  CAS  Google Scholar 

  15. V. G. Badelin, O. V. Kulikov, V. S. Batagin, E. Udzig, A. Zielenkiewicz, W. Zielenkiewicz and G. A. Krestov, Thermochim. Acta, 169 (1990) 81.

    Article  CAS  Google Scholar 

  16. C. H. Spink and I. Wadsö, J. Chem. Thermodynam., 7 (1975) 561.

    CAS  Google Scholar 

  17. J. O. Hutchens, A. G. Cole and J. W. Stout, J. Am. Chem. Soc., 82 (1960) 4813.

    Article  CAS  Google Scholar 

  18. C. G. De Kruif, J. Voogd and J. C. A. Offringa, J. Chem. Thermodynam., 11 (1979) 651.

    Article  CAS  Google Scholar 

  19. H. J. Svec and D. D. Clyde, J. Chem. Eng. Data, 10 (1965) 151.

    Article  CAS  Google Scholar 

  20. S. Tagaki, H. Chihara and S. Seki, Bull. Chem. Soc. Jap., 32 (1959) 84.

    Google Scholar 

  21. J. D. Cox and G. Pilcher, Thermochemistry of organic and organometallic compounds, Academic Press, London 1970, p. 643.

    Google Scholar 

  22. G. M. Sheldrick (1997a). SHELXS-97 Program for the solution of crystal structures, University of Göttingen, Germany.

    Google Scholar 

  23. G. M. Sheldrick (1997b). SHELXS-97/2 Program for the refinement of crystal structures, University of Göttingen, Germany.

    Google Scholar 

  24. M. N. Burnett and C. K. Jonson (1996). ORTEP III: Oak ridge thermal ellipsoid plot program for crystal structure illustration, Oak ridge national laboratory report ORNL-6895.

  25. P. McArdle (1993). Oscail Software-Windows Software for crystallography from National University of Ireland, Galway-Version 7d, J. Appl. Cryst., 26 (1993) 752.

    Article  Google Scholar 

  26. K. Balasubramanian, R. S. Krishnan and Y. Iitaka, Bull. Chem. Soc. Jap., 35 (1962) 1303.

    CAS  Google Scholar 

  27. A. Burger and R. Ramberger, Microchim. Acta, II (1979) 259.

    Google Scholar 

  28. B. W. Low and F.M. Richards, J. Am. Chem. Soc., 74 (1952) 1660.

    Article  CAS  Google Scholar 

  29. T. Curtius, J. Prakt. Chem., 26 (1882) 158.

    Article  Google Scholar 

  30. A. Burger and R. Ramberger, Microchim. Acta, II (1979) 273.

    Article  Google Scholar 

  31. G. L. Perlovich and A. Bauer-Brandl, J. Therm. Anal. Cal., 63 (2001) 653.

    Article  CAS  Google Scholar 

  32. J. Šesták, Thermophysical properties of solids. Their measurements and theoretical thermal analysis. Moscow, Mir 1987, p. 456.

    Google Scholar 

  33. C. E. Birchenhall, In: Reactivity of Solids, Elsevier, Amsterdam 1960, p. 24.

    Google Scholar 

  34. W. E. Wallace, W. F. Offutt and A. L. Robinson, J. Am. Chem. Soc., 65 (1943) 347.

    Article  CAS  Google Scholar 

  35. R. M. Ginde and A. S. Myerson, J. Cryst. Growth, 116 (1992) 41.

    Article  CAS  Google Scholar 

  36. J.-P. Legros and Å. Kvick, Acta Cryst., B36 (1980) 3052.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perlovich, G.L., Hansen, L.K. & Bauer-Brandl, A. The Polymorphism of Glycine. Thermochemical and structural aspects. Journal of Thermal Analysis and Calorimetry 66, 699–715 (2001). https://doi.org/10.1023/A:1013179702730

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013179702730

Navigation