Skip to main content
Log in

Transition Matrix Monte Carlo Method

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present a formalism of the transition matrix Monte Carlo method. A stochastic matrix in the space of energy can be estimated from Monte Carlo simulation. This matrix is used to compute the density of states, as well as to construct multi-canonical and equal-hit algorithms. We discuss the performance of the methods. The results are compared with single histogram method, multi-canonical method, and other methods. In many aspects, the present method is an improvement over the previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Binder (ed.), Monte Carlo Methods in Statistical Physics, Topics in Current Physics, Vol. 7 (Springer-Verlag, 1979); Applications of the Monte Carlo Methodin Statistical Physics, Topics in Current Physics, Vol. 36, 2nd ed. (Springer-Verlag, 1987); The Monte Carlo Methodin Condensed Matter Physics, Topics in Applied Physics, Vol. 71, 2nd ed. (Springer-Verlag, 1995).

  2. H. Niederreiter, Bull. Amer. Math. Soc. 84:957 (1978).

    Google Scholar 

  3. M. H. Kalos and P. A. Whitlock, Monte Carlo Methods, Vol. I:Basics (Wiley, 1986).

  4. R. Assaraf and M. Caffarel, Phys. Rev. Lett. 83:4682 (1999).

    Google Scholar 

  5. H. Meirovitch, Reviews in Computational Chemistry 12:1 (1998).

    Google Scholar 

  6. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61:2635 (1988).

    Google Scholar 

  7. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63:1195; (erratum) 63:1658 (1989).

    Google Scholar 

  8. B. A. Berg and T. Neuhaus, Phys. Rev. Lett. 68:9 (1992); B. A. Berg, Inter. J. Mod. Phys. C 3:1083 (1992); B. A. Berg, Fields Inst. Commun. 26:1 (2000).

    Google Scholar 

  9. P. M. C. de Oliveira, T. J. P. Penna, and H. J. Herrmann, Braz. J. Phys. 26:677 (1996).

    Google Scholar 

  10. J.-S. Wang, T. K. Tay, and R. H. Swendsen, Phys. Rev. Lett. 82:476 (1999); J.-S. Wang, Comp. Phys. Commu. 121-122:22 (1999).

    Google Scholar 

  11. J.-S. Wang, Eur. Phys. J. B 8:287 (1999).

    Google Scholar 

  12. J.-S. Wang and L. W. Lee, Comp. Phys. Commu. 127:131 (2000).

    Google Scholar 

  13. R. H. Swendsen, B. Diggs, J.-S. Wang, S.-T. Li, C. Genovese, and J. B. Kadane, Int. J. Mod. Phys. C 10:1563 (1999).

    Google Scholar 

  14. J. R. Norris, Markov Chains (Cambridge University Press, 1997).

  15. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  16. W. K. Hastings, Biometrika, 57:97 (1970).

    Google Scholar 

  17. P. M. C. de Oliveira, Eur. Phys. J. B 6:111 (1998); Braz. J. Phys. 30:766 (2000).

    Google Scholar 

  18. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58:86 (1987).

    Google Scholar 

  19. J. Lee, Phys. Rev. Lett. 71:211 (1993); (erratum) 71:2353 (1993).

    Google Scholar 

  20. G. Besold, J. Risbo, and O. G. Mouritsen, Comput. Materials Science 15:311 (1999).

    Google Scholar 

  21. R.H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 57:2607 (1986); J.-S. Wang and R. H. Swendsen, Phys. Rev. B 37:7745 (1988); ibid. 38:4840 (1988); ibid. 38:9086 (1988).

    Google Scholar 

  22. E. Marinari and G. Parisi, Europhys. Lett. 19:451 (1992).

    Google Scholar 

  23. H. S. Chan and K. A. Dill, J. Chem. Phys. 99:2116 (1993); ibid. 100:9238 (1994).

    Google Scholar 

  24. P. M. C. de Oliveira, T. J. P. Penna, and H. J. Herrmann, Eur. Phys. J. B 1:205 (1998); P. M. C. de Oliveira, Braz. J. Phys. 30:195 (2000).

    Google Scholar 

  25. B. A. Berg and U. H. E. Hansmann, Eur. Phys. J. B 6:395 (1998).

    Google Scholar 

  26. B. A. Berg, J. Statist. Phys. 82:323 (1996).

    Google Scholar 

  27. S.-T. Li, The Transition Matrix Monte Carlo Method, Ph.D. dissertation (Carnegie Mellon University, 1999), unpublished.

  28. A. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. 17:10 (1975).

    Google Scholar 

  29. P. D. Beale, Phys. Rev. Lett. 76:78 (1996).

    Google Scholar 

  30. Z. F. Zhan, L. W. Lee, and J.-S. Wang, Physica A 285:239 (2000).

    Google Scholar 

  31. B. A. Berg, U. E. Hansmann, and T. Celik, Phys. Rev. B 50:16444 (1994).

    Google Scholar 

  32. A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Phys. Rev. E 51:5092 (1995).

    Google Scholar 

  33. M. E. J. Newman and R. G. Palmer, J. Statist. Phys. 97:1011 (1999).

    Google Scholar 

  34. E. T. Jaynes, Maximum Entropy and Bayesian Methods in Applied Statistics, J. H. Justice, ed. (Cambridge University Press, 1985).

  35. A. R. Lima, P. M. C. de Oliveira, and T. J. P. Penna, J. Statist. Phys. 99:691 (2000).

    Google Scholar 

  36. M. Kastner, M. Promberger, and J. D. Muñoz, Phys. Rev. E 62:7422 (2000).

    Google Scholar 

  37. G. R. Smith and A. D. Bruce, J. Phys. A Math. Gen. 28:6623 (1995); Europhys. Lett. 34:91 (1996).

    Google Scholar 

  38. M. Fitzgerald, R. R. Picard, and R. N. Silver, Europhys. Lett. 46:282 (1999); J. Statist. Phys. 98:321 (2000).

    Google Scholar 

  39. F. Wang and D. P. Landau, Phys. Rev. Lett. 86:2050 (2001); cond-mat/0107006.

    Google Scholar 

  40. L. W. Lee and J.-S. Wang, cond-mat/0106494, to appear, Phys. Rev. E.

  41. J. D. Muñoz and H. J. Herrmann, Int. J. Mod. Phys. C 10:95 (1999); Comput. Phys. Commun. 121-122:13 (1999).

    Google Scholar 

  42. A. R. Lima, P. M. C. de Oliveira, and T. J. P. Penna, Sol. Stat. Commu. 114:447 (2000); ibid. 115:395 (2000).

    Google Scholar 

  43. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier Science, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JS., Swendsen, R.H. Transition Matrix Monte Carlo Method. Journal of Statistical Physics 106, 245–285 (2002). https://doi.org/10.1023/A:1013180330892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013180330892

Navigation