Skip to main content
Log in

Automated Derivation of Primitives for Movement Classification

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We describe a new method for representing human movement compactly, in terms of a linear super-imposition of simpler movements termed primitives. This method is a part of a larger research project aimed at modeling motor control and imitation using the notion of perceptuo-motor primitives, a basis set of coupled perceptual and motor routines. In our model, the perceptual system is biased by the set of motor behaviors the agent can execute. Thus, an agent can automatically classify observed movements into its executable repertoire. In this paper, we describe a method for automatically deriving a set of primitives directly from human movement data.

We used movement data gathered from a psychophysical experiment on human imitation to derive the primitives. The data were first filtered, then segmented, and principal component analysis was applied to the segments. The eigenvectors corresponding to a few of the highest eigenvalues provide us with a basis set of primitives. These are used, through superposition and sequencing, to reconstruct the training movements as well as novel ones. The validation of the method was performed on a humanoid simulation with physical dynamics. The effectiveness of the motion reconstruction was measured through an error metric. We also explored and evaluated a technique of clustering in the space of primitives for generating controllers for executing frequently used movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, R.O., Aldridge, H., Askew, R.S., Burridge, R.R., Bluethmann, W., Diftler, M., Lovchik, C., Magruder, D., and Rehnmark, F. 2000. Impedance control: An approach to manipulation. IEEE Intelligent Systems, 15(4):57–63.

    Google Scholar 

  • Arbib, M. 1992. Schema theory. In The Encyclophedia of Aritificial Intelligence, 2nd ed., S. Shapiro (Ed.), Wiley-Interscience: New York, pp. 1427–1443.

    Google Scholar 

  • Arkin, R.C. 1987. Motor schema based navigation for a mobile robot: An approach to programming by behavior. In Proceedings of IEEE Intl. Conf. on Robotics and Automation, Raleigh, NC, pp. 264–271.

  • Arkin, R.C. 1998. Behavior-Based Robotics, MIT Press: Cambridge, MA.

    Google Scholar 

  • Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A., and Saltie, P. 1995. Modular organization of motor behavior in the frog's spinal cord. Trends Neurosci., 18:442–446.

    Google Scholar 

  • Brand, M. 1996. Understanding manipulation in video. In 2nd International Conference on Face and Gesture Recognition, Killington, VT, pp. 94–99.

  • Brand, M., Oliver, N., and Pentland, A. 1997. Coupled hidden markov models for complex action recognition. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press: Los Alamitos, CA, pp. 994–999.

    Google Scholar 

  • Gordon, A.D. 1999. Classification, Chapman & Hall: London.

    Google Scholar 

  • Flash, T. and Hogan, N. 1985. The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5:1688–1703.

    Google Scholar 

  • Gottlieb, G.L., Song, Q., Hong, D.-A., Almeida, G.L., and Corcos, D. 1996. Coordinating movement at two joints: A principle of linear covariance. Journal of Neurophysiology, 75:1760–1764.

    Google Scholar 

  • Hashimoto, S., Narita, S., Kasahara, H., Shirai, K., Kobayashi, T., Takanishi, A., Sugano, S., Yamaguchi, J., Sawada, H., Takanobu, H., Shibuya, K., Morita, T., Kurata, T., Onoe, N., Ouchi, K., Noguchi, T., Niwa, Y., Nagayama, S., Tabayashi, H., Matsui, I., Obata, M., Matsuzaki, H., Murasugi, A., Kobayashi, T., Haruyama, S., Okada, T., Hidaki, Y., Taguchi, Y., Hoashi, K., Morikawa, E., Iwano, Y., Araki, D., Suzuki, J., Yokoyama, M., Dawa, I., Nishino, D., Inoue, S., Hirano, T., Soga, E., Gen, S., Yanada, T., Kato, K., Sakamoto, S., Ishii, Y., Matsuo, S., Yamamoto, Y., Sato, K., Hagiwara, T., Ueda, T., Honda, N., Hashimoto, K., Hanamoto, T., Kayaba, S., Kojima, T., Iwata, H., Kubodera, H., Matsuki, R., Nakajima, T., Nitto, K., Yamamoto, D., Kamizaki, Y., Nagaike, S., Kunitake, Y., and Morita. S. 2000. Humanoid robots in waseda university—Hadaly-2 and wabian. In Proc. of First IEEE-RAS International Conference on Humanoid Robots, Cambridge, MA, USA.

  • Hogan, N. 1984. An organizing principle for a class of voluntary movements. Journal of Neuroscience, 4:2745–2754.

    Google Scholar 

  • Hollars, M., Rosenthal, D., and Sherman, M. 1991. Sd/fast user's manual. Technical report, Symbolic Dynamics, Inc.

  • Iacoboni, M., Woods, R.P., Brass, M., Bekkering, H., Mazziotta, J.C., and Rizzolatti, G. 1999. Cortical mechanisms of human imitation. Science, 286:2526–2528.

    Google Scholar 

  • Inoue, H., Tachi, S., Tanie, K., Yokoi, K., Hirai, S., Hirukawa, H., Hirai, K., Nakayama, S., Sawada, K., Nishiyama, T., Mikiand, O., Itoko, T., Inaba, H., and Sudo, M. 2000. HRP: Humanoid robotics project of miti. In Proc. of First IEEE-RAS International Conference on Humanoid Robots, Cambridge, MA, USA.

  • Jenkins, O.C., Matari?, M.J., and Weber, S. 2000. Primitive-based movement classification for humanoid imitation. In Proceedings, First IEEE-RAS International Conference on Humanoid Robotics (Humanoids-2000), Cambridge, MA, USA.

  • Kreighbaum, E. and Barthels, K.M. 1985. Biomechanics: A Qualitative Approach for Studying Human Movement. Burgess Publishing Company: Minneapolis, Minnesota.

    Google Scholar 

  • Matari´c, M.J. 1997. Behavior-based control: Examples from navigation, learning, and group behavior. Journal of Experimental and Theoretical Artificial Intelligence, 9(23):323–336.

    Google Scholar 

  • Matari?, M.J. 2000. Getting humanoids to move and imitate. IEEE Intelligent Systems, July 2000, 18–24.

  • Matari?, M.J. 2001. Visuo-motor primitives as a basis for learning by imitation: Linking perception to action and biology to robotics. In Imitation in Animals and Artifacts, Kerstin Dautenhahn and Christopher Nehaniv (Eds.). MIT Press: Cambridge, MA.

    Google Scholar 

  • Matari?, M.J. and Marjanovi?, M.J. 1993. Synthesizing complex behaviors by composing simple primitives, self organization and life: From simple rules to global complexity. In European Conference on Artificial Life (ECAL-93), Brussels, Belgium, pp. 698–707.

  • Matari?, M.J., Zordan, V.B., and Mason, Z. 1998. Movement control methods for complex, dynamically simulated agents: Adonis dances the macarena. In Proceedings, Autonomous Agents, ACM Press: Minneapolis, St. Paul, MI, pp. 317–324.

    Google Scholar 

  • Matari?, M.J., Zordan, V.B., and Williamson, M. 1999. Making complex articulated agents dance: An analysis of control methods drawn from robotics, animation, and biology. Autonomous Agents and Multi-Agent Systems, 2(1):23–43.

    Google Scholar 

  • Mussa-Ivaldi, F.A. 1997. Nonlinear force fields:Adistributed system of control primitives for representation and learning movements. In Proc. of the 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, IEEE Computer Society Press: Los Alamitos, CA, pp. 84–90.

    Google Scholar 

  • Mussa-Ivaldi, F.A., Giszter, S.F., and Bizzi, E. 1993. Convergent force fields organized in the frog's spinal cord. Journal of Neuroscience, 12(2):467–491.

    Google Scholar 

  • Pashler, H.E. 1999. The Psychology of Attention, MIT Press: Cambridge, MA.

    Google Scholar 

  • Pierce, D. and Kuipers, B. 1997. Map learning with uninterpreted sensors and effectors. Artificial Intelligence Journal, 92:169–229.

    Google Scholar 

  • Pomplun, M. and Matari?, M.J. 2000. Evaluation metrics and results of human arm movement imitation. In Proceedings, First IEEE-RAS International Conference on Humanoid Robotics (Humanoids-2000),MIT Press: Cambridge, MA. Also IRIS Technical Report IRIS–00–384.

    Google Scholar 

  • Sanger, T.D. 2000. Human arm movements described by a low dimensional superposition of principal component. Journal of NeuroScience, 20(3):1066–1072.

    Google Scholar 

  • Schaal, S. 1999. Is imitation learning the route to humanoid robots. Trends in Cognitive Sciences, 3(6):233–242.

    Google Scholar 

  • Schaal, S., Kotosaka, S., and Sternad, D. 1998. Programmable pattern generators. In Proceedings, 3rd International Conference on Computational Intelligence in Neuroscience, Research Triangle Park, NC, pp. 48–51.

  • Stein, P.S.G. 1997. Neurons, Networks, and Motor Behavior, MIT Press: Cambridge, MA.

    Google Scholar 

  • Thoroughman, K.A. and Shadmehr, R. 2000. Learning of action through combination of motor primitives. Nature, 407:742–747.

    Google Scholar 

  • Turk, M. and Pentland, A. 1991. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–86.

    Google Scholar 

  • Uno, Y., Kawato, M., and Suzuki, R. 1989. Formation and control of optimal trajectory in human multi-joint arm movement. Biological Cybernetics, 61(2):89–101.

    Google Scholar 

  • Viviani, P. and Terzuolo, C. 1982. Trajectory determines movement dynamics. Neuroscience, 7:431–437.

    Google Scholar 

  • Wada, Y., Koike, Y., Vatikiotis-Bateson, E., and Kawato, M. 1995. A computational theory for movement pattern recognition based on optimal movement pattern generation. Biological Cybernetics, 73:15–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fod, A., Matarić, M.J. & Jenkins, O.C. Automated Derivation of Primitives for Movement Classification. Autonomous Robots 12, 39–54 (2002). https://doi.org/10.1023/A:1013254724861

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013254724861

Navigation