Skip to main content
Log in

Fractal Dimension of Different Structural-Type Zeolites and of the Active Sites

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Fragments of faujasite, ZSM-11, ZSM-5, mordenite, sodalite, and beta-A zeolites show different fractal dimensions. The fractal dimension averaged for non-buried atoms produces mental pictures of zeolites that change from a slightly to a rather porous material. The 2–12-rings of –SiH2–OH–AlH2– units model Brønsted acids. The SURMO2/GEPOL comparison characterizes cavities. The 6-ring model shows maximal fractal dimension and is expected to be the most reactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry, and Use (Wiley-Interscience, New York, 1974).

    Google Scholar 

  2. R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, New York, 1978).

    Google Scholar 

  3. R.M. Barrer, Hydrothermal Chemistry of Zeolites (Academic, New York, 1982).

    Google Scholar 

  4. J.A. Rabo, ed., Zeolite Chemistry and Catalysis, ACS Monograph 171 (Am. Chem. Soc., Washington, DC, 1976).

  5. G. Gottardi and E. Galli, Natural Zeolites (Springer, Berlin, 1985).

    Google Scholar 

  6. G. Gottardi, Pure Appl. Chem. 58 (1986) 1343.

    Google Scholar 

  7. Molecular Sieves (Soc. of Chemical Industry, London, 1968).

  8. E.M. Flanigen and L.B. Sand, eds., Molecular Sieve Zeolites, Vol.1, Adv. Chem. 101 (Am. Chem. Soc., Washington, DC, 1971).

    Google Scholar 

  9. W.M. Meier and J.B. Uytterhoeven, eds., Molecular Sieves, Adv. Chem. 121 (Am. Chem. Soc., Washington, DC, 1973).

    Google Scholar 

  10. J.B. Uytterhoeven, ed., Molecular Sieves (Leuven University Press, Leuven, 1973).

  11. J.R. Katzer, ed., Molecular Sieves, Vol. 2, ACS Symp. Ser. 40 (Am. Chem. Soc., Washington, DC, 1977).

  12. L.B. Sand and F.A. Mumpton, eds., Natural Zeolites: Occurrence, Properties, Use (Pergamon, Oxford, 1978).

    Google Scholar 

  13. L.V.C. Rees, ed., in: Proc. 5th Int. Conference on Zeolites, Naples, Italy, 2-6 June 1980 (Heyden, London, 1980).

  14. G.D. Stucky and F.G. Dwyer, eds., Intrazeolite Chemistry, ACS Symp. Ser. 218 (Am. Chem. Soc., Washington, DC, 1983).

    Google Scholar 

  15. D.H. Olson and A. Bisio, eds., in: Proc. 6th Int. Zeolite Conference, Reno, 10-15 July 1983 (Butterworths, Guildford, 1984).

    Google Scholar 

  16. B. Drzaj, S. Hocevar and S. Pejovnik, eds., Zeolites: Synthesis, Structure, Technology and Application (Elsevier, Amsterdam, 1985).

    Google Scholar 

  17. Y. Murakami, A. Iijima and J.W. Ward, eds., New Developments in Zeolite Science Technology (Kodansha, Tokyo, 1986).

    Google Scholar 

  18. E.F. Smith, Chemistry in America: Chapters from the History of Science in the United States (C. Appleton and Co., New York, 1914).

    Google Scholar 

  19. A. Thackray, J.L. Sturchio, P.T. Carroll and R. Bud, Chemistry in America 1876-1976. Historical Indicators (Reidel, Dordrecht, 1985).

    Google Scholar 

  20. E.M. Flanigen, B.M. Lock, R.L. Patton and S.T. Wilson, Pure Appl. Chem. 58 (1986) 1351.

    Google Scholar 

  21. J.V. Smith, Feldspar Minerals (Springer, Berlin, 1974).

    Google Scholar 

  22. W.L. Brown, ed., Feldspar and Feldspathoids (Reidel, Dordrecht, 1983).

  23. J. Smith, Chem. Rev. 88 (1988) 149.

    Google Scholar 

  24. J.M. Newsam, Science 231 (1986) 1093.

    Google Scholar 

  25. D.E.W. Vaughan, in: Natural Zeolites: Occurrence, Properties, Use, eds. L.B. Sand and F.A. Mumpton (Pergamon, Oxford, 1978) p. 353.

    Google Scholar 

  26. J.M. Newsam, M.M.J. Treacy, W.T. Koetsier and C.B. de Gruyter, Proc. R. Soc. London A 420 (1988) 375.

    Google Scholar 

  27. J.A. Rabo, ed., Zeolite Chemistry and Catalysis (Am. Chem. Soc., Washington, DC, 1976).

  28. G. Kerr, Adv. Chem. Ser. (1973) 219.

  29. P.A. Jacobs, Carboniogenic Activity of Zeolites (Elsevier, New York, 1977).

    Google Scholar 

  30. H.W. Haynes Jr., Catal. Rev. Sci. Eng. 17 (1978) 273.

    Google Scholar 

  31. P.A. Jacobs, Catal. Rev. Sci. Eng. 24 (1982) 415.

    Google Scholar 

  32. J.W. Ward, in: Zeolite Chemistry and Catalysis, ed. J. Rabo, ACS Monograph 171 (Am. Chem. Soc., Washington, DC, 1976).

    Google Scholar 

  33. J. Dwyer, in: Innovation in Zeolite Material Science, eds. P.J. Grobet et al. (Elsevier, Amsterdam, 1988).

    Google Scholar 

  34. P. Viruela-Martín, C.M. Zicovich-Wilson and A. Corma, J. Phys. Chem. 97 (1993) 13713.

    Google Scholar 

  35. P.J. O'Malley and J. Dwyer, Chem. Phys. Lett. 143 (1988) 97.

    Google Scholar 

  36. F. Torrens, E. Ortí and J. Sánchez-Marín, J. Chim. Phys. Phys. Chim. Biol. 88 (1991) 2435.

    Google Scholar 

  37. F. Torrens, J. Sánchez-Marín and I. Nebot-Gil, J. Mol. Graphics 14 (1996) 245.

    Google Scholar 

  38. F. Torrens, J. Mol. Catal. A 119 (1997) 393.

    Google Scholar 

  39. F. Torrens, J. Sánchez-Marín and I. Nebot-Gil, J. Mol. Struct. (Theochem) 426 (1998) 105.

    Google Scholar 

  40. F. Torrens, J. Sánchez-Marín and I. Nebot-Gil, J. Mol. Graphics Mod. 16 (1998) 57.

    Google Scholar 

  41. F. Torrens, J. Sánchez-Marín and I. Nebot-Gil, Molecules 4 (1999) 28.

    Google Scholar 

  42. F. Torrens, J. Chromatogr. A 827 (1998) 345.

    Google Scholar 

  43. F. Torrens, J. Chem. Inf. Comput. Sci. 40 (2000) 236.

    Google Scholar 

  44. A.Y. Meyer, J. Chem. Soc. Perkin Trans. 2 (1985) 1161.

    Google Scholar 

  45. A.Y. Meyer, J. Comput. Chem. 9 (1988) 18.

    Google Scholar 

  46. B. Lee and F.M. Richards, J. Mol. Biol. 55 (1971) 379.

    Google Scholar 

  47. R.B. Hermann, J. Phys. Chem. 76 (1972) 2754.

    Google Scholar 

  48. A. Bondi, J. Phys. Chem. 68 (1964) 441.

    Google Scholar 

  49. S.J. Wodak and J. Janin, Proc. Natl. Acad. Sci. USA 77 (1980) 1736.

    Google Scholar 

  50. M. Lewis and D.C. Rees, Science 230 (1985) 1163.

    Google Scholar 

  51. F. Torrens, Russ. J. Phys. Chem. (Engl. Transl.) 74 (2000) 115.

    Google Scholar 

  52. F. Torrens, J. Sánchez-Marín and I. Nebot-Gil, J. Comput. Chem. 22 (2001) 477.

    Google Scholar 

  53. F. Torrens, E. Ortí and J. Sánchez-Marín, Comput. Phys. Commun. 66 (1991) 341.

    Google Scholar 

  54. F. Torrens, E. Ortí and J. Sánchez-Marín, J. Mol. Graphics 9 (1991) 254.

    Google Scholar 

  55. M. Rubio, F. Torrens and J. Sánchez-Marín, J. Comput. Chem. 14 (1993) 647.

    Google Scholar 

  56. F. Torrens, M. Rubio and J. Sánchez-Marín, Comput. Phys. Commun. 115 (1998) 87.

    Google Scholar 

  57. J.L. Pascual-Ahuir, E. Silla, J. Tomasi and R. Bonaccorsi, J. Comput. Chem. 8 (1987) 778.

    Google Scholar 

  58. J.L. Pascual-Ahuir and E. Silla, J. Comput. Chem. 11 (1990) 1047.

    Google Scholar 

  59. E. Silla, F. Villar, O. Nilsson, J.L. Pascual-Ahuir and O. Tapia, J. Mol. Graphics 8 (1990) 168.

    Google Scholar 

  60. E. Silla, I. Tuñón and J.L. Pascual-Ahuir, J. Comput. Chem. 12 (1991) 1077.

    Google Scholar 

  61. I. Tuñón, E. Silla and J.L. Pascual-Ahuir, Protein Eng. 5 (1992) 715.

    Google Scholar 

  62. J.L. Pascual-Ahuir, E. Silla and I. Tuñón, J. Comput. Chem. 15 (1994) 1127.

    Google Scholar 

  63. J.L. Pascual-Ahuir, E. Silla and I. Tuñón, J. Mol. Struct. (Theochem) 426 (1998) 331.

    Google Scholar 

  64. B. Terryn and J. Barriol, J. Chim. Phys. Phys. Chim. Biol. 78 (1981) 207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torrens, F. Fractal Dimension of Different Structural-Type Zeolites and of the Active Sites. Topics in Catalysis 18, 291–297 (2002). https://doi.org/10.1023/A:1013807209673

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013807209673

Navigation