Skip to main content
Log in

Porous hydroxyapatite ceramics of bi-modal pore size distribution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A route for the fabrication of porous hydroxyapatite ceramics having two populations of open pores is reported. The bodies are prepared by sintering the spherical gelatin/hydroxyapatite granules. As the result, ceramics containing intragranular small-size pores and intergranular large-size interconnecting pores are obtained. The pore size and content are dependent on the route. Ceramics can generally be applied as bone replacement materials where the interconnections in the intergranular pores are the pathway to conduct cells and vessels for the bone ingrowth, whereas the intragranular pores can be filled with a drug, e.g. to eliminate infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aoki, “Science and Medical Application of Hydroxyapatite” (JAAS, Tokyo, 1991) p. 137.

    Google Scholar 

  2. L. L. Hench, in “Ceramics and Society”, edited by P. Vincenzini (Techna, Faenza, 1995) p. 101.

    Google Scholar 

  3. K. A. Hing, S. M. Best and W. Bonfield, J. Mater. Sci.: Mater. Med. 10 (1999) 135.

    Google Scholar 

  4. Y. L. Liu, J. Schoenaers, K. De Groot, J. R. De Wijn and E. Schepers, ibid. 11 (2000) 711.

    Google Scholar 

  5. A. Uchida, S. M. N. Nade, E. R. Mccartney and W. Ching, J. Bone Joint Surg. 66B (1984) 269.

    Google Scholar 

  6. K. A. Hing, S. M. Best, K. E. Tanner, W. Bonfield and P. A. Revell, J. Mater. Sci.: Mater. Med. 10 (1999) 663.

    Google Scholar 

  7. P. S. Eggli, W. Mueller and R. K. Schenk, Clin. Orthop. Rel. Res. 232 (1988) 127.

    Google Scholar 

  8. A. Krajewski, A. Ravaglioli, E. Roncari, P. Pinsco and L. Montanari, J. Mater. Sci.: Mater. Med. 11 (2000) 763.

    Google Scholar 

  9. W. Paul and C. T. Sharma, ibid. 10 (1999) 383.

    Google Scholar 

  10. W. Paul and C. T. Sharma, J. Mater. Sci. Lett. 14 (1995) 224.

    Google Scholar 

  11. M. Itokazu, M. Esaki, K. Yamamoto, T. Tanemori and T. Kasai, J. Mater. Sci.: Mater. Med. 10 (1999) 249.

    Google Scholar 

  12. J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps and B. Thierry, ibid. 10 (1999) 111.

    Google Scholar 

  13. R. E. Holmes, V. Mooney, R. Bucholz and A. Tencher, Clin. Orthop. Rel. Res. 188 (1984) 252.

    Google Scholar 

  14. M. Yamamoto, Y. Tabata, H. Kawasaki and Y. Ikada, J. Mater. Sci.: Mater. Med. 11 (2000) 213.

    Google Scholar 

  15. J. J. Klawitter and S. F. Hulbert, J. Biomed. Mater. Res. Symp. 2 (1971) 161.

    Google Scholar 

  16. R. A. Smith, M. W. Mosesson, A. U. Daniels and T. K. Gartner, J. Mater. Sci.: Mater. Med. 11 (2000) 279.

    Google Scholar 

  17. V. P. Orlovski, Z. A. Ezhova, G. V. Rodicheva, E. M. Koval, G. E. Sukhanova and L. A. Tezikova, J. Inorg. Chem. 37 (1992) 881.

    Google Scholar 

  18. S. M. Barinov and V. Ja. Shevchenko, “Strength of Engineering Ceramics” (Science, Moscow, 1996) p. 19.

    Google Scholar 

  19. K. K. Strelov, “Structure and Properties of Refractories” (Metallurgy, Moscow, 1972) p. 216.

    Google Scholar 

  20. G. N. Dulnev and Yu. P. Zarichnjak, “Heat Conductivity of Mixtures and Composite Materials” (Energy, Leningrad, 1974) p. 264.

    Google Scholar 

  21. M. G. Kaganer, “Heat Insulation in Low Temperatures Technology” (Mashinostrojenije, Moscow, 1966) p. 275.

    Google Scholar 

  22. Yu. L. Krasulin, V. N. Timofeev, S. M. Barinov, A. B. Ivanov, A. N. Asonov and G. D. Shnyrev, “Porous Structural Ceramics” (Metallurgy, Moscow, 1980) p. 73.

    Google Scholar 

  23. R. A. Andrievski, Powder Metal. N1 (1982) 37.

    Google Scholar 

  24. R. A. Andrievski and I. I. Spivak, “Strength of Refractory Compounds and Related Materials” (Metallurgy, Tcheljabinsk, 1989) p. 239.

    Google Scholar 

  25. W. Suchanek and M. Yoshimura, J. Mater. Res. 13 (1998) 94.

    Google Scholar 

  26. K. Ioku, K. Yanagisawa, N. Yamasaki, H. Kurosawa, K. Shibura and H. Yokozeki, Bio-Med. Mater. and Eng. 3 (1993) 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komlev, V.S., Barinov, S.M. Porous hydroxyapatite ceramics of bi-modal pore size distribution. Journal of Materials Science: Materials in Medicine 13, 295–299 (2002). https://doi.org/10.1023/A:1014015002331

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014015002331

Keywords

Navigation