Skip to main content
Log in

The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Oxidation by hydroxyl radicals is the main removal process for organic compounds in the troposphere. This oxidation acts as a source of ozone and as a removal process for hydroxyl and peroxy radicals, thereby reducing the efficiency of methane oxidation and promoting the build-up of methane. Emissions of organic compounds may therefore lead to the build-up of two important radiatively-active trace gases: methane and ozone. Emission pulses of 10 organic compounds were followed in a global 3-D Lagrangian chemistry-transport model to quantify their indirect greenhouse gas impacts through changes induced in the tropospheric distributions of methane and ozone. The main factors influencing the global warming potentials of the 10 organic compounds were found to be their spatial emission patterns, chemical reactivity and transport, molecular complexity and oxidation products formed. The indirect radiative forcing impacts of organic compounds may be large enough that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R.: 2000, ‘Atmospheric Chemistry VOCs and NOx’, Atmos. Eviron. 34, 2063–2101.

    Google Scholar 

  • Atkinson, R., Baulch, D. L., Cox, R. A., Hampson, R. F., Kerr, J. A., Rossi, M. J., and Troe, J.: 1996, ‘Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. Supplement V. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry’, Atmos. Environ. 30, 3903–3904.

    Google Scholar 

  • Berntsen, T. K., Isaksen, I. S. A., Myhre, G., Fuglestvedt, J. S., Stordal, F., Larsen, T. A., Freckleton, R. S., and Shine, K. P.: 1997: ‘Effects of Anthropogenic Emissions on Tropospheric Ozone and Its Radiative Forcing’, J. Geophys. Res. 102, 28101–28126.

    Google Scholar 

  • Collins, W. J., Derwent, R. G., Johnson, C. E., and Stevenson, D. S.: 2000, ‘The Impact of Human Activities on the Photochemical Production and Destruction of Tropospheric Ozone’, Quart. J. Roy. Meteorol. Soc. 126, 1925–1951.

    Google Scholar 

  • Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: 1997, ‘Tropospheric Ozone in a Global-Scale Three-Dimensional Lagrangian Model and Its Response to NOx Emissions Controls’, J. Atmos. Chem. 26, 223–274.

    Google Scholar 

  • Collins, W. J., Stevenson, D. S., Johnson, C. E., and Derwent, R. G.: 1999, ‘The Role of Convection in Determining the Budget of Odd Hydrogen in the Upper Troposphere’, J. Geophys. Res. 104, 26927–26941.

    Google Scholar 

  • Cooke, W. F. and Wilson, J. J. N.: 1996, ‘A Global Black Carbon Aerosol Model’, J. Geophys. Res. 101, 19395–19409.

    Google Scholar 

  • Crutzen, P. J.: 1974, ‘Photochemical Reactions Initiated by and Influencing Ozone in the Unpolluted Troposphere’, Tellus 26, 47–57.

    Google Scholar 

  • Cullen, M. J. P.: 1993: ‘The Unified Forecast/Climate Model’, Met. Mag. 122, 81–94.

    Google Scholar 

  • Daniel, J. S. and Solomon, S.: 1998, ‘On the Climate Forcing of Carbon Monoxide’, J. Geophys. Res. 103, 13249–13260.

    Google Scholar 

  • Demerjian, K. L., Kerr, J. A., and Calvert, J. G.: 1974, ‘Mechanism of Photochemical Smog Formation’, Adv. Environ. Sci. Technol. 4, 1–262.

    Google Scholar 

  • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: 1997, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12, JPL Publ. 97-4, Jet Propulsion Laboratory, Pasadena, California.

    Google Scholar 

  • Derwent, R. G.: 1990, Trace Gases and their Relative Contribution to the Greenhouse Effect, AERE Report R-13716, H. M. Stationery Office, London.

    Google Scholar 

  • Derwent, R. G., Collins, W. J., Johnson, C. E., and Stevenson, D. S.: 2001, ‘Transient Behaviour of Tropospheric Ozone Precursors in a Global 3-D CTM and their Indirect Greenhouse Effects’, Clim. Change 49, 463–487.

    Google Scholar 

  • Edwards, J. M. and Slingo, A.: 1996, ‘Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-Scale Model, Quart. J. Roy. Meteorol. Soc. 122, 689–719.

    Google Scholar 

  • Ehhalt, D. H.: 1974, ‘The Atmospheric Cycle of Methane’, Tellus 26, 58–70.

    Google Scholar 

  • Fuglestvedt, J. S., Berntsen, T., Isaksen, I. S. A., Mao, H., Liang, X. Z., and Wang, W. C.: 1999, ‘Climatic Forcing of Nitrogen Oxides through Changes in Tropospheric Ozone and Methane; Global 3-D Model Studies’, Atmos. Environ. 33, 961–977.

    Google Scholar 

  • Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: 1995, ‘A Global Model of Natural Volatile Organic Compound Emissions’, J. Geophys. Res. 100, 8873–8892.

    Google Scholar 

  • Haywood, J. M., Schwarzkopf, M. D., and Ramaswamy, V.: 1998, ‘Estimates of Radiative Forcing Due to Modeled Increases in Tropospheric Ozone’, J. Geophys. Res. 103, 16999–17007.

    Google Scholar 

  • Hansen, J., Sato, M., Ruedy, R., Lacis, A., and Oinas, V.: 2000, ‘GlobalWarming in the Twenty-First Century: An Alternative Scenario’, Proc. Nat. Acad. Sci. 97, 9875–9880.

    Google Scholar 

  • Hough, A. M.: 1988, The Calculation of Photolysis Rates for Use in Global Tropospheric Modelling Studies, UKAEA Harwell Report AERE R 13259, Oxfordshire.

  • IPCC: 1995, Radiative Forcing of Climate Change, The 1994 Report of the Scientific Assessment Working Group of the IPCC,WMO UNEP, Geneva.

    Google Scholar 

  • IPCC: 1996, Climate Change 1995: The IPCC Scientific Assessment, Cambridge University Press, Cambridge.

    Google Scholar 

  • Isaksen, I. S. A. and Hov, O.: 1987, ‘Calculation of Trends in the Tropospheric Concentration of O3, OH, CO, CH4 and NOx’, Tellus B 33, 271–285.

    Google Scholar 

  • Johnson, C. E. and Derwent, R. G.: 1996, ‘Relative Radiative Forcing Consequences of Global Emissions of Hydrocarbons, Carbon Monoxide and NOx from Human Activities Estimated with a Zonally-Averaged Two-Dimensional Model’, Clim. Change 34, 439–462.

    Google Scholar 

  • Kanakidou, M., Dentener, F. J., Brasseur, G. P., Collins, W. J., Berntsen, T. K., Hauglustaine, D. A., Houweling, S., Isaksen, I. S. A., Krol, M., Law, K. S., Lawrence, M. G., Muller, J. F., Plantevin, P. H., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F.: 1998, 3-D Global Simulations of Tropospheric Chemistry with Focus on Ozone Distributions, EUR 18842 Report, European Commission, Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Kanikadou, M., Dentener, F. J., Brasseur, G. P., Berntsen, T. K., Collins, W. J., Hauglustaine, D. A., Houweling, S., Isaksen, I. S. A., Krol, M., Lawrence, M. G., Muller, J. F., Poisson, N., Roelofs, G. J., Wang, Y., and Wauben, W. M. F.: 1999, ‘3-D Global Simulations of Tropospheric CO Distributions – Results of the GIM/IGAC Intercomparison 1997 Exercise’, Chemosphere: Global Change Sci. 1, 263–282.

    Google Scholar 

  • Kheshgi, H. S., Jain, A. K., Kotamarthi, R., and Wuebbles, D. J.: 1999: ‘Future Atmospheric Methane Concentrations in the Context of the Stabilisation of Greenhouse Gas Concentrations’, J. Geophys. Res. 104, 19183–19190.

    Google Scholar 

  • Kiehl, J. T., Schneider, T. L., Portmann, R. W., and Solomon, S.: 1999, ‘Climate Forcing Due to Tropospheric and Stratospheric Ozone’, J. Geophys. Res. 104, 31239–31254.

    Google Scholar 

  • Lacis, A. A., Wuebbles, D. J., and Logan, J. A.: 1990, ‘Radiative Forcing of Climate by Changes in the Vertical Distribution of Ozone’, J. Geophys. Res. 95, 9971–9981.

    Google Scholar 

  • Leighton, P. A.: 1961, Photochemistry of Air Pollution, Academic Press, New York.

    Google Scholar 

  • Levy, H.: 1971, ‘Normal Atmosphere: Large Radical and Formaldehyde Concentrations Predicted’, Science 173, 141–143.

    Google Scholar 

  • Murphy, D. M. and Fahey, D. W.: 1994, ‘An Estimate of the Flux of Stratospheric Reactive Nitrogen and Ozone into the Troposphere’, J. Geophys. Res. 99, 5325–5332.

    Google Scholar 

  • Olivier, J. G. J., Bouwman, A. F., van der Maas, C. W. M., Berdowski, J. J. M., Veldt, C., Bloos, J. P. J., Visschedijk, A. J. H., Zandveld, P. Y. J., and Haverlag, J. L.: 1996, Description of EDGAR Version 2.0, RIVM Report Nr. 771060 002, Bilthoven.

  • Olson, J., Prather, M., Berntsen, T., Carmichael, G., Chatfield, R., Connell, P., Derwent, R., Horowitz, L., Jin, S., Kanakidou, M., Kasibhatla, P., Kotamarthi, R., Kuhn, M., Law, K., Penner, J., Perliski, L., Sillman, S., Stordal, F., and Thompson, A., and Wild, O.: 1997, ‘Results from the Intergovernental Panel on Climatic Change Photochemical Model Intercomparison (Photocomp)’, J. Geophys. Res. 102, 5979–5991.

    Google Scholar 

  • Penner, J. E., Atherton, C. S., Dignon, J., Ghan, S. J., Walton, J. J., and Hameed, S.: 1991, ‘Tropospheric Nitrogen: A Three-Dimensional Study of Sources, Distributions and Deposition’, J. Geophys. Res. 96, 959–990.

    Google Scholar 

  • Prather, M. J.: 1994, ‘Lifetimes and Eigenstates in Atmospheric Chemistry’, Geophys. Res. Lett. 21, 801–804.

    Google Scholar 

  • Prather, M. J.: 1996, ‘Natural Modes and Time Scales in Atmospheric Chemistry: Theory, GWPs for CH4 and CO, and Runaway Growth’, Geophys. Res. Lett. 23, 2597–2600.

    Google Scholar 

  • Ramanathan, V., Callis, L., Cess, R., Hansen, J., Isaksen, I., Kuhn,W., Lacis, A., Luther, F., Mahlman, J., Reck, R., and Schlesinger, M.: 1987, ‘Climate-Chemical Interactions and Effects of Changing Atmospheric Trace Gases’, Rev. Geophys. 25, 1441–1482.

    Google Scholar 

  • Rasch, P. J., Feichter, J., Law, K., Mahowald, N., Penner, J., Benkowitz, C., Genthon, C., Giannakopoulos, C., Kasibhatla, P., Koch, D., Levy, H., Maki, T., Prather, M., Roberts, D. L., Roelofs, G.-J., Stevenson, D., Stockwell, Z., Taguchi, S., Kritz, M., Chipperfield, M., Baldocchi, D., McMurray, P., Barrie, L., Balkanski, Y., Chatfield, R., Kjellstrom, E., Lawrence, M., Lee, H. N., Lelieveld, J., Noone, K. J., Seinfeld, J., Stenchikov. G., Schwartz, S., Walcek, C., and Williamson, D.: 2000, ‘A Comparison of Scavenging and Deposition Processes in Global Models: Results from the WCRP Cambridge Workshop of 1995’, Tellus 52B, 1025–1056.

    Google Scholar 

  • Stevenson, D. S., Collins, W. J., Johnson, C. E., and Derwent, R. G.: 1998, ‘Intercomparison and Evaluation of Atmospheric Transport in a Lagrangian Model (STOCHEM), and an Eulerian Model (UM), Using 222Rn as a Short-Lived Tracer’, Quart. J. Roy. Meteorol. Soc. 124, 2477–2491.

    Google Scholar 

  • Stevenson, D. S., Johnson, C. E., Collins, W. J., Derwent, R. G., Shine, K. P., and Edwards, J. M.: 1998, ‘Evolution of Tropospheric Ozone Radiative Forcing’, Geophys. Res. Lett. 25, 3819–3822.

    Google Scholar 

  • Walton, J., MacCracken, M., and Ghan, S.: 1988, ‘A Global-Scale Lagrangian Trace Species Model of Transport, Transformation, and Removal Processes’, J. Geophys. Res. 93, 8339–8354.

    Google Scholar 

  • Wild, O. and Prather, M. J.: 2000, ‘Excitation of the Primary Tropospheric Chemical Mode in a Global Three-Dimensional Model’, J. Geophys. Res. 105, 24647–24660. (Received 19 December 2000; in revised form 6 July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, W.J., Derwent, R.G., Johnson, C.E. et al. The Oxidation of Organic Compounds in the Troposphere and their Global Warming Potentials. Climatic Change 52, 453–479 (2002). https://doi.org/10.1023/A:1014221225434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014221225434

Keywords

Navigation