Skip to main content
Log in

A New Static Failure Criterion for Isotropic Polymers

  • Published:
Mechanics of Composite Materials Aims and scope

Abstract

A new static failure criterion for isotropic polymers with different strengths in tension and compression based on exponential dependence between the mean stress and the von Mises equivalent stress is proposed. The two material parameters introduced can be determined by two simple tests - the uniaxial tension and compression. The locus of the criterion is nearly conical for low hydrostatic pressures and tends to a cylindrical form if an increased hydrostatic pressure is applied. The validity of the criterion is demonstrated by experimental strength data taken from the literature for several polymers in the case of superimposed hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Kody and A. J. Lesser, “Deformation and yield of epoxy networks in constrained states of stress,” J. Mater. Sci., 32, No. 21, 5637-5643 (1997).

    Google Scholar 

  2. A. J. Lesser and R. S. Kody, “A generalised model for the yield behaviour of epoxy networks in multi-axial stress states,” J. Polym. Sci., Pt. B, Polym. Phys., 35, 1611-1619 (1997).

    Google Scholar 

  3. N. R. Karttunen and A. J. Lesser, “Yield behaviour and failure response of an aliphatic polyketone terpolymer subjected to multi-axial stress states,” J. Mater. Sci., 35, 2507-2515 (2000).

    Google Scholar 

  4. S. Rabinowitz, I. M. Ward, and J. S. C. Parry, “The effect of hydrostatic pressure on the shear yield behaviour of polymers,” J. Mater. Sci., 5, 29-39 (1970).

    Google Scholar 

  5. A. S. Wronski and M. Pick, “Pyramidal yield criteria for epoxides,” J. Mater. Sci., 12, 28-34 (1977).

    Google Scholar 

  6. H. L. D. Pugh, E. F. Chandler, L. Holliday, and J. Mann, “The effect of hydrostatic pressure on the tensile properties of plastics,” Polym. Eng. Sci., 11, No. 6, 463-473 (1971).

    Google Scholar 

  7. K. D. Pae and D. R. Mears, “The effect of high pressure on mechanical behaviour and properties of polytetrafluoroethylene and polyethylene,” Polym. Lett., 6, 269-273 (1968).

    Google Scholar 

  8. P. B. Bowden and J. A. Jukes, “The plastic flow of isotropic polymers,” J. Mater. Sci., 7, 52-63 (1972).

    Google Scholar 

  9. W. Whitney and R. D. Andrews, “Yielding of glassy polymer: volume effects,” J. Polym. Sci., Pt. C, 16, 2981-2990 (1967).

    Google Scholar 

  10. O. Ol'khovik, “Apparatus for testing of strength of polymers in a three-dimensional stressed state,” Mech. Compos. Mater., 19, No. 2, 270-275 (1983).

    Google Scholar 

  11. O. Ol'khovik, “Static strength of an epoxy compound under hydrostatic stress state,” Izv. Vuzov. Mashinostroenie, No. 9, 3-7 (1986).

    Google Scholar 

  12. O. Ol'khovik, O. Figovsky, and V. Feigin, “Criterion of static strength for polyester glass-fiber plastic binder in triaxial stress state,” J. Mech. Behav. Mater., 9, No. 4, 291-295 (1998).

    Google Scholar 

  13. O. Ol'khovik, O. Figovsky, and V. Feigin, “Identification of static strength criteria,” J. Mech. Behav. Mater., 6, No. 4, 301-308 (1996).

    Google Scholar 

  14. R. Quinson, J. Perez, M. Rink, and A. Pavan, “Yield criteria for amorphous glassy polymers,” J. Mater. Sci., 32, 1371-1379 (1997).

    Google Scholar 

  15. J. C. Bauwens, “Yield condition and propagation of Lüders' lines in tension-torsion experiments on poly(vinyl Chloride),” J. Polym. Sci., Pt. A-2, 8, 893-901, (1970).

    Google Scholar 

  16. R. A. Bubeck, S. E. Bales, and H. D. Lee, “Changes in yield and deformation of polycarbonates caused by physical aging,” Polym. Eng. Sci., 24, No. 10, 1142-1148 (1984).

    Google Scholar 

  17. S. S. Sternstein and L. Ongchin, “Yield criteria for plastic deformation of glassy high polymers in general stress fields,” ACS Polym. Prepr., 10, 1117-1124 (1969).

    Google Scholar 

  18. R. S. Raghava, R. M. Caddell, and G. Yeh, “The macroscopic yield behavior of polymers,” J. Mater. Sci., 8, 225-232 (1973).

    Google Scholar 

  19. L. W. Zachary and W. F. Riley, “Optical response and yield behavior of a polyester model material,” Experim. Mech., 17, 321-326 (1977).

    Google Scholar 

  20. J. L. F. Freire and R. F. Riley, “Yield behavior of photoplastic materials,” Experim. Mech., 20, 118-125 (1980).

    Google Scholar 

  21. R. S. Raghava, and R. M. Caddell, “A macroscopic yield criterion for crystalline polymers,” Int. J. Mech. Sci., 15, 967-974 (1973).

    Google Scholar 

  22. R. M. Caddell, R. S. Raghava, and A. G. Atkins, “Pressure-dependent yield criteria for polymers,” Mater. Sci. Eng., 13, 113-120 (1974).

    Google Scholar 

  23. P. B. Bowden, “The yield behavior of glassy polymers,” in: The Physics of Glassy Polymers, Ch. 5, Wiley, New York, pp. 279-389.

  24. R. H. Sigley, A. S. Wronski, and T. V. Parry, “Three-parameter yield criterion for a brittle polyester resin,” J. Mater. Sci, 26, 3985-3990 (1991).

    Google Scholar 

  25. B. Paul, “Macroscopic criteria for plastic flow and brittle fracture,” in: H. Liebowitz (ed.), Fracture. Vol. II, Academic Press (1968).

  26. J. C. M. Li and J. B. C. Wu, “Pressure and normal stress effects in shear yielding,” J. Mater. Sci., 11, 445-457 (1976).

    Google Scholar 

  27. D. Sardar, S. V. Radcliffe, and E. Baer, “Effects of high hydrostatic pressure on the mechanical behavior of a crystalline polymer-polyoxymethylene,” Polym. Eng. Sci., 8, No. 4, 290-301 (1968).

    Google Scholar 

  28. W. A. Spitzig and O. Richmond., “Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression,” Polym. Eng. Sci., 19, No. 16, 1129-1139 (1979).

    Google Scholar 

  29. D. C. Drucker and W. Prager, “Soil mechanics and plastic analysis of limit design,” Quart. Appl. Math., 10, 157-165 (1952).

    Google Scholar 

  30. G. S. Pisarenko and Lebedev A. A., Deformation and Strength of Materials under Multiaxial Loading [in Russian], Naukova Dumka (1976).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altenbach, H., Tushtev, K. A New Static Failure Criterion for Isotropic Polymers. Mechanics of Composite Materials 37, 475–482 (2001). https://doi.org/10.1023/A:1014269314272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014269314272

Navigation