Skip to main content
Log in

Conduction Model of Metal Oxide Gas Sensors

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Tin dioxide is a widely used sensitive material for gas sensors. Many research and development groups in academia and industry are contributing to the increase of (basic) knowledge/(applied) know-how. However, from a systematic point of view the knowledge gaining process seems not to be coherent. One reason is the lack of a general applicable model which combines the basic principles with measurable sensor parameters.

The approach in the presented work is to provide a frame model that deals with all contributions involved in conduction within a real world sensor. For doing so, one starts with identifying the different building blocks of a sensor. Afterwards their main inputs are analyzed in combination with the gas reaction involved in sensing. At the end, the contributions are summarized together with their interactions.

The work presented here is one step towards a general applicable model for real world gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Sberveglieri, Sensors and Actuators B, 6, 239 (1992).

    Google Scholar 

  2. N. Bâ rsan, Sensors and Actuators B, 17, 241 (1994).

    Google Scholar 

  3. M. Bauer, N. Bâ rsan, K. Ingrisch, A. Zeppenfeld, I. Denk, B. Schuman, U.Weimar, and W. Göpel, Proc. of the 11th European Microelectronic Conference (1997).

  4. U. Hoefer, K. Steiner, and E. Wagner, Sensors and Actuators B, 26/27, 59 (1995).

    Google Scholar 

  5. S.R. Morrison, The Chemical Physics of Surfaces, 2nd edn. (Plenum Press, New York, 1990).

    Google Scholar 

  6. G. Heiland and D. Kohl, in Chemical Sensor Technology, Vol. 1, edited by T. Seiyama (Kodansha, Tokyo), Ch. 2, pp. 15-38.

  7. V.A. Henrich and P.A. Cox, The Surface Science of Metal Oxides (University Press, Cambridge, 1994), pp. 312-316.

    Google Scholar 

  8. M. Egashira, M. Nakashima, and S. Kawasumi, J. Chem. Soc. Chem. Comm. 1047 (1981).

  9. N. Bâ rsan and R. Ionescu, Sensors and Actuators B, 12, 71 (1993).

    Google Scholar 

  10. S. Lenaerts, M. Honore, G. Huyberechts, J. Roggen, and G. Maes, Sensors and Actuators B, 18/19, 478 (1994).

    Google Scholar 

  11. A. Broniatowski, in Polycrystalline Semi-Conductors, edited by G. Harbeke (Springer Solid State Sciences Series, Vol. 57), (Hardcover-April 1985).

  12. A. Broniatowski, in Polycrystalline Semi-Conductors, edited by G. Harbeke (Springer Solid State Sciences Series, Vol. 57), (Hardcover-April 1985).

  13. R. Stratton, Proc. Phys. Soc. B, 69, 513 (1956).

    Google Scholar 

  14. A. Many, Y. Goldstein, and N.B. Grover, Semiconductor Surfaces (Interscience, New York, 1965), p. 308.

    Google Scholar 

  15. H. Geistlinger, I. Eisele, B. Flietner, and R.Winter, Sensors and Actuators B, 34, 499-505 (1996).

    Google Scholar 

  16. A.F. Hollemann and E. Wieberg, Lehrbuch der Anorganischen Chemie, 101th edn. (Walter de Gruyter, Berlin, 1995), p. 1592.

    Google Scholar 

  17. M. Schweizer-Berberich, PhD Thesis, Universität Tübingen, 1998.

  18. W. Göpel and K.D. Schierbaum, Sensors and Actuators B, 26/27, 1 (1995).

    Google Scholar 

  19. S. Lenaerts, J. Roggen, and G. Maes, Spectrochimica Acta Part A-Molecular Spectroscopy, 51, 883 (1995).

    Google Scholar 

  20. J.P. Joly, L. Gonszalez-Cruz, and Y. Arnaud, Bulletin de la Société Chimique de France, 11 (1986).

  21. B. Gillot, C. Fey, and D. Delafosse, Journal of Chemical Physics, 73, 19 (1976).

    Google Scholar 

  22. N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci., 86, 335 (1979).

    Google Scholar 

  23. A.M. Volodin and A.E. Cherkasin, Reac. Kinet. Catal. Lett., 17, 329 (1981).

    Google Scholar 

  24. S.C. Chang, J. Vac. Sci. Technol., 17, 366 (1980).

    Google Scholar 

  25. D. Kohl, in Gas Sensors edited by, G. Sberveglieri (Kluwer, Dordrecht, 1992) ch. 2, p. 43.

    Google Scholar 

  26. M. Egashira, M. Nakashima, and S. Kawasumi, J. Chem. Soc. Chem. Comm., 1047 (1981).

  27. K. Morishige, S. Kittaka, and T. Morimoto, Bull. Chem. Soc. Japan, 53, 2128 (1980).

    Google Scholar 

  28. A. Guest, PhD Thesis University of Nottingham, 1985.

  29. E.W. Thornton and P.G. Harrison, J. Chem. Soc. Faraday Trans., 71, 461 (1975).

    Google Scholar 

  30. F. Berger, E. Beche, R. Berjoan, D. Klein, and A. Chambaudet, Applied Surf. Sci., 93, 9 (1996).

    Google Scholar 

  31. J.F. Boyle and K.A. Jones, Electron. Mater. 6, 717 (1977).

    Google Scholar 

  32. S.J. Gentry and T.A. Jones, Sensors and Actuators, 10, 141 (1986).

    Google Scholar 

  33. H. Windischmann and P. Mark, J. Electrochem. Soc.: Solid-State Sci. Technol., 126, 672 (1979).

    Google Scholar 

  34. M.J. Willett, in Techniques and Mechanisms D.E. Williams and in Gas Sensing, Vol. 3, edited by P.T. Moseley, J.O.W. Norris (Adam Hilger, Bristol, 1991), p. 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsan, N., Weimar, U. Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014405811371

Navigation