Skip to main content
Log in

Intense XUV emission generated by a capillary discharge based apparatus

  • Papers
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

We present the characterization of an apparatus generating XUV radiation by a high peak value (20–40) kA and short rise time (≈ 20 ns) current pulse in a capillary discharge channel (up to 20 cm in length) filled by argon gas. The apparatus has been developed with the purpose of production of an intensive spontaneous emission in the spectral region of (2–50) nm and study of the z-pinch conditions for obtaining the laser generation in the Nelike Ar at 46.9 nm. The current pulses are generated by the direct discharge of a 7 nF water dielectric capacitor resonantly charged up to 400 kV by a six-stages Marx generator. The XUV radiation emitted during the radial compression of the plasma column is measured using calibrated PIN diodes, filters and multilayer mirrors in order to test the z-pinch plasma collapse and to measure the conversion efficiency of the electrical energy into the XUV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Klosner and W.T. Silvfast: Opt. Lett.23 (1998) 1608.

    Article  ADS  Google Scholar 

  2. C.H. Moreno, M.C. Marconi, K. Kanizay, J.J. Rocca, Yu.A. Uspenskii, A.V. Vinogradov, and Yu.A. Pershin: Phys. Rev. E60 (1999) 911.

    Article  ADS  Google Scholar 

  3. M. McGeoch: Appl. Opt.37 (1998) 1651.

    Article  ADS  Google Scholar 

  4. J.J. Rocca, V. Shlyaptev, F.G. Tomasel, O.D. Cortazar, D. Hartshorn, and J.L.A Chilla: Phys. Rev. Lett.73 (1994) 2192.

    Article  ADS  Google Scholar 

  5. A. Hildebrand, L. Juschkin, and M. Kroger: Contr. Plasma Phys.40 (2000) 130.

    Article  Google Scholar 

  6. L. Juskin, A. Hildebrand, and H. J. Kunze: Plasma Sources Sci. Technol.8 (1999) 3703.

    Google Scholar 

  7. C. Steden and H.J. Kunze: Phys. Lett. A151 (1990) 534.

    Article  ADS  Google Scholar 

  8. M. Hebenstreit, R. Fertner, T. Neger, M. Pockl, and F. Aumayr: J. Phys. D: Appl. Phys.29 (1996) 1933.

    Article  ADS  Google Scholar 

  9. S.V. Kukhlevsky, Cs. Vér, J. Kaiser, L. Kozma, L. Palladino, A. Reale, G. Tomassetti, F. Flora, and G. Giordano: Appl. Phys. Lett.74 (1999) 2779.

    Article  ADS  Google Scholar 

  10. P. Vrba and M. Vrbová: Contr. Plasma Phys.40 (2000) 581.

    Article  Google Scholar 

  11. H.J. Kunze, K.N. Koshelev, C. Steden, D. Uskov, and H.T. Wieschebrink: Phys. Lett. A193 (1994) 183.

    Article  ADS  Google Scholar 

  12. D. Hong, R. Dussart, C. Cachoncinlle, W. Rosenfeld, S. Gotze, J. Pons, R. Viladrosa, C. Fleurier, and J.M. Pouvesle: Rev. Sci. Instr.71 (2000) 15.

    Article  ADS  Google Scholar 

  13. R.C. Elton:X-ray lasers, Academic Press, New York, 1990.

    Google Scholar 

  14. B.R. Benware, C.H. Moreno, D.J. Burd, and J.J. Rocca: Opt. Lett.22 (1997) 796.

    Article  ADS  Google Scholar 

  15. J.J. Rocca: Rev. Sci. Instr.70 (1999) 3799.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work is supported by the Italian National Institute of Nuclear Physics and in part by the Italian National Institute of Matter Physics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomassetti, G., Ritucci, A., Palladino, L. et al. Intense XUV emission generated by a capillary discharge based apparatus. Czech J Phys 52, 405–416 (2002). https://doi.org/10.1023/A:1014520520847

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014520520847

PACS

Navigation