Skip to main content
Log in

Limit Clusters in the Inviscid Burgers Turbulence with Certain Random Initial Velocities

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the infinite time shock limits given certain Markovian initial velocities to the inviscid Burgers turbulence. Specifically, we consider the one-sided case where initial velocities are zero on the negative half-line and follow a time-homogeneous nice Markov process X on the positive half-line. Finite shock limits occur if the Markov process is transient tending to infinity. They form a Poisson point process if X is spectrally negative. We give an explicit description when X is furthermore spatially homogeneous (a Lévy process) or a self-similar process on (0, ∞). We also consider the two-sided case where we suppose an independent dual process in the negative spatial direction. Both spatial homogeneity and an exponential Lévy condition lead to stationary shock limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. M. Burgers, The Nonlinear Diffusion Equation (Dordrecht, Reidel, 1974).

  2. W. A. Woyczyn´ ski, Göttingen Lectures on Burgers-KPZ Turbulence, Lecture Notes in Mathematics, Vol. 1700 (Springer, 1998).

  3. E. Hopf, The partial differential equation u t +uu x = ζu xx, Comm. Pure Appl. Math. 3:201–230 (1950).

    Google Scholar 

  4. M. Avellaneda, Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals, Commun. Math. Phys. 169:45–59 (1995).

    Google Scholar 

  5. M. W. E, Avellaneda and Statistical properties of shocks in Burgers turbulence, Commun. Math. Phys. 172:13–38 (1995).

  6. R. Ryan, Large-deviation analysis of Burgers turbulence with white-noise initial data, Commun. Pure Appl. Math. 51:47–75 (1998).

    Google Scholar 

  7. L. Frachebourg and P. A. Martin, Exact statistical properties of the Burgers equation, J. Fluid Mech. 417:323–349 (2000).

    Google Scholar 

  8. Z. S. She, E. Aurell, and U. Frisch, The inviscid Burgers equation with initial data of Brownian type, Commun. Math. Phys. 148:632–641 (1992).

    Google Scholar 

  9. Y. Sinai, Statistics of shocks in solution of inviscid Burgers equation, Commun. Math. Phys. 148:601–621 (1992).

    Google Scholar 

  10. J. Bertoin, The inviscid Burgers equation with Brownian initial velocity, Commun. Math. Phys. 193:397–406 (1998).

    Google Scholar 

  11. L. Carraro and J. Duchon, Equation de Burgers avec conditions initiales à accroissements indépendants et homogènes, Ann. Inst. H. Poincaré Anal. Non Linéaire 15:431–458 (1998).

    Google Scholar 

  12. R. Ryan, The statistics of Burgers turbulence initialized with fractional Brownian noise data, Commun. Math. Phys. 191:71–86 (1998).

    Google Scholar 

  13. P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics (Philadelphia, 1973).

  14. R. Tribe and O. Zaboronski, On the large time asymptotics of decaying Burgers turbulence, Comm. Math. Phys. 212:415–436 (2000).

    Google Scholar 

  15. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum (Kluwer, 1999).

  16. M. Winkel, Burgers turbulence initialized by a regenerative impulse, Stoch. Proc. Appl. 93:241–268 (2001).

    Google Scholar 

  17. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion (Springer, 1999).

  18. N. Jacob and R. L. Schilling, Lévy-type processes and pseudo-differential operators, in Lévy processes-Theory and Applications, O. E. Barndorff-Nielsen, T. Mikosch and S. Resnick, eds. (Birkhäuser, 2001), pp. 139–168.

  19. R. K. Getoor, Splitting times and shift functionals, Z. Wahrscheinlichkeitstheorie verw. Geb. 47:69–81 (1979).

    Google Scholar 

  20. J. Bertoin, Lévy Processes (Cambridge University Press, 1996).

  21. K. Sato, Lévy Processes and Infinitely Divisible Distributions (Cambridge University Press, 1999).

  22. J. Bertoin, Subordinators: Examples and Applications, Ecole d'été de Probabilités de St-Flour XXVII, Lecture Notes in Mathematics, Vol. 1717 (Springer, 1999).

  23. J. Lamperti, Semi-stable Markov processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 22:205–225 (1972).

    Google Scholar 

  24. B. Fristedt, Intersections and limits of regenerative sets, in Random Discrete Stuctures, D. Aldous and R. Pemantle, eds. (Springer, Berlin, 1996), pp. 121–151.

    Google Scholar 

  25. J. Bertoin, Intersection of independent regenerative sets, Probab. Theory Related Fields 114:97–121 (1999).

    Google Scholar 

  26. H. Thorisson, Coupling, Stationarity, and Regeneration (Springer, 2000).

  27. J. Bertoin and Y. Le Jan, Representation of measures by balayage from a regular recurrent point, Ann. Probab. 20:538–548 (1992).

    Google Scholar 

  28. B. E. Fristedt and W. E. Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrscheinlichkeitstheorie verw. Geb. 18:167–182 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkel, M. Limit Clusters in the Inviscid Burgers Turbulence with Certain Random Initial Velocities. Journal of Statistical Physics 107, 893–917 (2002). https://doi.org/10.1023/A:1014598400004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014598400004

Navigation