Skip to main content
Log in

Approximate Quantified Constraint Solving by Cylindrical Box Decomposition

  • Published:
Reliable Computing

Abstract

This paper applies interval methods to a classical problem in computer algebra. Let a quantified constraint be a first-order formula over the real numbers. As shown by A. Tarski in the 1930's, such constraints, when restricted to the predicate symbols <, = and function symbols +, ×, are in general solvable. However, the problem becomes undecidable, when we add function symbols like sin. Furthermore, all exact algorithms known up to now are too slow for big examples, do not provide partial information before computing the total result, cannot satisfactorily deal with interval constants in the input, and often generate huge output. As a remedy we propose an approximation method based on interval arithmetic. It uses a generalization of the notion of cylindrical decomposition—as introduced by G. Collins. We describe an implementation of the method and demonstrate that, for quantified constraints without equalities, it can efficiently give approximate information on problems that are too hard for current exact methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anai, H. andWeispfenning, V.: Deciding Linear-Trigonometric Problems, in: Proc. ISAAC 2000, International Symposium on Symbolic and Algebraic Computation, ACM Press, 2000.

  2. Arnon, D. S., Collins, G. E., and McCallum, S.: Cylindrical Algebraic Decomposition I: The Basic Algorithm, SIAM Journal of Computing 13 (4) (1984), pp. 865–877, also in [7].

    Google Scholar 

  3. Beltran, M., Castillo, G., and Kreinovich, V.: Algorithms That Still Produce a Solution (Maybe Not Optimal) Even When Interrupted: Shary's Idea Justified, Reliable Computing 4 (1) (1998), pp. 39–53.

    Google Scholar 

  4. Benhamou, F. and Goualard, F.: Universally Quantified Interval Constraints, in: Proceedings of the Sixth International Conference on Principles and Practice of Constraint Programming (CP'2000), Lecture Notes in Computer Science, Springer-Verlag, Singapore, 2000.

    Google Scholar 

  5. Bodnár, G., Pau, P., and Schicho, J.: Exact Real Computation in Computer Algebra, Technical Report 00–33, RISC-Linz, 2000.

  6. Brown, Ch.: Simple CAD Construction and Its Applications, Journal of Symbolic Computation (2001), to appear.

  7. Caviness, B. F. and Johnson, J. R. (eds): Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and Monographs in Symbolic Computation, Springer, 1998.

  8. Collins, G. E.: Quantifier Elimination for the Elementary Theory of Real Closed Fields by Cylindrical Algebraic Decomposition, in: Second GI Conf. Automata Theory and Formal Languages, Lecture Notes in Computer Science 33, Springer-Verlag, Berlin, 1975, pp. 134–183, also in [7].

    Google Scholar 

  9. Collins, G. E. and Hong, H.: Partial Cylindrical Algebraic Decomposition for Quantifier Elimination, Journal of Symbolic Computation 12 (1991), pp. 299–328, also in [7].

    Google Scholar 

  10. Collins, G. E. and Krandick, W.: A Hybrid Method for High Precision Calculation of Polynomial Real Roots, in: Proceedings of the 1993 International Symposium on Symbolic and Algebraic Computation ISSAC'93, ACM Press, Kiev, Ukraine, 1993, pp. 47–52.

    Google Scholar 

  11. Dorato, P.: Quantified Multivariate Polynomial Inequalities, IEEE Control Systems Magazine (2000), pp. 48–58.

  12. Dorato, P., Yang, W., and Abdallah, C.: Robust Multi-Objective Feedback Design by Quantifier Elimination, Journal of Symbolic Computation 24 (1997), pp. 153–159.

    Google Scholar 

  13. Ebbinghaus, H.-D., Flum, J., and Thomas, W.: Mathematical Logic, Springer-Verlag, 1984.

  14. Edelsbrunner, H.: A New Approach to Rectangle Intersections I, II, Internat. J. Comput. Math. 13 (3–4) (1983), pp. 209–219, 221–229.

    Google Scholar 

  15. Engl, H. W.: Regularization Methods for the Stable Solution of Inverse Problems, Surv. Math. Ind. 3 (1993), pp. 71–143.

    Google Scholar 

  16. Fiorio, G., Malan, S., Milanese, M., and Taragna, M.: Robust Performance Design of Fixed Structure Controllers with Uncertain Parameters, in: Proceedings of the 32nd IEEE Conf. Decision and Control, 1993.

  17. Gardeñes, E., Mielgo, H., and Trepat, A.: Modal Intervals: Reason and Ground Semantics, in: Nickel, K. (ed.), Interval Mathematics 1985, Lecture Notes in Computer Science 212, Springer-Verlag, Berlin, Heidelberg, 1968, pp. 27–35.

    Google Scholar 

  18. Gardeñes, E., Sainz, M. Á., Jorba, L., Calm, R., Estela, R., Mielgo, H., and Trepat, A.: Modal Intervals, Reliable Computing 7 (2) (2001), pp. 77–111.

    Google Scholar 

  19. Garloff, J. and Graf, B.: Solving Strict Polynomial Inequalities by Bernstein Expansion, in: Munro, N. (ed.), The Use of Symbolic Methods in Control System Analysis and Design, The Institution of Electrical Engineers (IEE), London, 1999, pp. 339–352.

    Google Scholar 

  20. Gonzalez-Vega, L.: A Combinatorial Algorithm Solving Some Quantifier Elimination Problems, in [7].

  21. Grass, J.: Reasoning about Computational Resource Allocation-An Introduction to Anytime Algorithms, ACM Crossroads 3 (1) (1996), see also http://www.acm.org/crossroads/xrds3–1/racra.html.

  22. Hammer, R., Hocks, M., Kulisch, U., and Ratz, D.: Nonlinear Equations in One Variable, in: Numerical Toolbox for Verified Computing I, Series in Computational Mathematics 21, Springer-Verlag, 1993.

  23. Hong, H.: Heuristic Search and Pruning in Polynomial Constraints Satisfaction, Ann.Math. Artif. Intell. 19 (3–4) (1997), pp. 319–334.

    Google Scholar 

  24. Hong, H.: Heuristic Search Strategies for Cylindrical Algebraic Decomposition, in: Calmet, J. et al. (eds), Proceedings of Artificial Intelligence and Symbolic Mathematical Computing, Lecture Notes in Computer Science 737, Springer-Verlag, 1992, pp. 152–165.

  25. Hong, H.: Improvements in CAD-Based Quantifier Elimination, PhD thesis, The Ohio State University, 1990.

  26. Hong, H.: Quantifier Elimination for Formulas Constrained by Quadratic Equations via Slope Resultants, The Computer Journal 36 (5) (1993), pp. 440–449.

    Google Scholar 

  27. Hong, H.: Symbolic-Numeric Methods for Quantified Constraint Solving, in: International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics SCAN-95, 1995, invited talk.

  28. Hong, H.: The Exact Region of Stability for MacCormack Scheme, Computing 56 (4) (1996).

  29. Hong, H., Liska, R., and Steinberg, S.: Testing Stability by Quantifier Elimination, Journal of Symbolic Computation 24 (2) (1997), pp. 161–187.

    Google Scholar 

  30. Hong, H. and Neubacher, A.: Approximate Quantifier Elimination, in: Proceedings of IMACSACA' 96, 1996.

  31. Hong, H., Neubacher, A., and Stahl, V.: The STURM Library Manual-A C++ Library for Symbolic Computation, Technical Report 94–30, RISC Linz, 1994.

  32. Hong, H. and Stahl, V.: Safe Starting Regions by Fixed Points and Tightening, Computing 53 (1994), pp. 323–335.

    Google Scholar 

  33. Jaulin, L. and Walter, É.: Guaranteed Tuning, with Application to Robust Control and Motion Planning, Automatica 32 (8) (1996), pp. 1217–1221.

    Google Scholar 

  34. Jirstrand, M.: Cylindrical Algebraic Decomposition-An Introduction, Technical Report, Automatic Control Group, Linköping, 1985.

    Google Scholar 

  35. Jirstrand, M.: Nonlinear Control System Design by Quantifier Elimination, Journal of Symbolic Computation 24 (2) (1997), pp. 137–152.

    Google Scholar 

  36. Johnson, J. R.: Real Algebraic Number Computation Using Interval Arithmetic, in: International Conference on Symbolic and Algebraic Computation (ISSAC'92), ACM Press, Berkeley, CA, 1992, pp. 195–205.

    Google Scholar 

  37. Malan, S., Milanese, M., and Taragna, M.: Robust Analysis and Design of Control Systems Using Interval Arithmetic, Automatica 33 (7) (1997), pp. 1363–1372.

    Google Scholar 

  38. McCallum, S.: Solving Polynomial Strict Inequalities Using Cylindrical Algebraic Decomposition, The Computer Journal 36 (5) (1993), pp. 432–438.

    Google Scholar 

  39. Mishra, B.: Algorithmic Algebra, Springer-Verlag, 1993.

  40. Moore, R. E.: Interval Analysis, Prentice Hall, Englewood Cliffs, 1966.

    Google Scholar 

  41. Moore, R. E.: Parameter Sets for Bounded-Error Data, Mathematics and Computer in Simulation 34 (1992), pp. 113–119.

    Google Scholar 

  42. Neubacher, A.: Parametric Robust Stability by Quantifier Elimination, PhD thesis, Research Institute for Symbolic Computation-Universität Linz, 1997.

  43. Neubacher, A.: Personal Communication.

  44. Neumaier, A.: Interval Methods for Systems of Equations, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  45. Pau, P. and Schicho, J.: Quantifier Elimination for Trigonometric Polynomials by Cylindrical Trigonometric Decomposition, Journal of Symbolic Computation 29 (6) (2000).

  46. Preparata, F. P. and Shamos, M. I.: Computational Geometry: An Introduction, Springer-Verlag, 1985.

  47. Ratschan, S.: Approximate Quantified Constraint Solving (AQCS), 2000, software package http://www.risc.uni-linz.ac.at/research/software/AQCS.

  48. Ratschan, S.: Convergence of Quantified Constraint Solving by Approximate Quantifiers, Technical Report 00–23, Research Institute for Symbolic Computation (RISC)-Linz, 2000, submitted.

  49. Ratschan, S.: Uncertainty Propagation in Heterogeneous Algebras for Approximate Quantified Constraint Solving, Journal of Universal Computer Science 6 (9) (2000).

  50. Richardson, D.: Some Undecidable Problems Involving Elementary Functions of a Real Variable, Journal of Symbolic Logic 33 (1968), pp. 514–520.

    Google Scholar 

  51. Shary, S. P.: Algebraic Approach to the Interval Linear Static Identification, Tolerance, and Control Problems, or One More Application of Kaucher Arithmetic, Reliable Computing 2 (1) (1996), pp. 3–33.

    Google Scholar 

  52. Shary, S. P.: On Optimal Solution of Interval Linear Equations, SIAM Journal on Numerical Analysis 32 (1995), pp. 610–630.

    Google Scholar 

  53. Shary, S. P.: Outer Estimation of Generalized Solution Sets to Interval Linear Systems, Reliable Computing 5 (3) (1999), pp. 323–335.

    Google Scholar 

  54. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, Univ. of California Press, Berkeley, 1951, also in [7].

    Google Scholar 

  55. Weihrauch, K.: Introduction to Computable Analysis, Texts in Theoretical Computer Science, Springer-Verlag, 2000.

  56. Weispfenning, V.: The Complexity of Linear Problems in Fields, Journal of Symbolic Computation 5 (1–2) (1988), pp. 3–27.

    Google Scholar 

  57. Zilberstein, Sh. and Russell, S. J.: Approximate Reasoning Using Anytime Algorithms, in: Natarajan, S. (ed.), Imprecise and Approximate Computation, Kluwer Academic Publishers, 1995.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ratschan, S. Approximate Quantified Constraint Solving by Cylindrical Box Decomposition. Reliable Computing 8, 21–42 (2002). https://doi.org/10.1023/A:1014785518570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014785518570

Keywords

Navigation