Skip to main content
Log in

Effects of L-Glutamate Transport Inhibition by a Conformationally Restricted Glutamate Analogue (2S,1'S,2'R)-2-(Carboxycyclopropyl)Glycine (L-CCG III) on Metabolism in Brain Tissue In Vitro Analysed by NMR Spectroscopy

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

(2S,1'S,2'R)-2-(Carboxycyclopropyl)glycine (L-CCG III) was a substrate of Na+-dependent glutamate transporters (GluT) in Xenopus laevis oocytes (IC50 ∼ 13 and ∼2 μM for, respectively, EAAT 1 and EAAT 2) and caused an apparent inhibition of [3H]L-glutamate uptake in “mini-slices“ of guinea pig cerebral cortex (IC50 ∼ 12 μM). In slices (350 μM) of guinea pig cerebral cortex, 5 μM L-CCG III increased both the flux of label through pyruvate carboxylase and the fractional enrichment of glutamate, GABA, glutamine and lactate, but had no effect on total metabolite pool sizes. At 50 μM L-CCG III decreased incorporation of 13C from [3-13C]-pyruvate into glutamate C4, glutamine C4, lactate C3 and alanine C3. The total metabolite pool sizes were also decreased with no change in the fractional enrichment. Furthermore, L-CCG III was accumulated in the tissue, probably via GluT. At lower concentration, L-CCG III would compete with L-glutamate for GluT and the changes probably reflect a compensation for the “missing” L-glutamate. At 50 μM, intracellular L-CCG III could reach > 10 mM and metabolism might be affected directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Logan, W. J. and Snyder, S. H. 1971. Unique high affinity system for glycine, glutamic and aspartic acids in central nervous tissue. Nature 234:297–299.

    Google Scholar 

  2. Balcar, V. J. and Johnston, G. A. R. 1972. The structural specificity of the high affinity uptake of L-glutamate and L-aspartate by rat brain slices. J. Neurochem. 19:2657–2666.

    Google Scholar 

  3. Bennett, M. R. and Balcar, V. J. 1999. Forty years of amino acid transmission in the brain. Neurochem. Int. 35:269–280.

    Google Scholar 

  4. Balcar, V. J., Takamoto, A., and Yoneda, Y. 2001. Neurochemistry of L-glutamate transport in the CNS: Thirty years of progress. Coll. Czech. Chem. Commun. 66:1315–1340.

    Google Scholar 

  5. Rothstein, J. D., Martin, L. J., and Kuncl, R. W. 1992. Decreased brain and spinal cord glutamate transport in amyotrophic lateral sclerosis. New Eng. J. Med. 326:1364–1468.

    Google Scholar 

  6. Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., and Kuncl, R. W. 1995. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann. Neurol. 38:3–84.

    Google Scholar 

  7. Scott, H. L., Tannenberg, A. E. C., and Dodd, P. R. 1995. Variant forms of neuronal glutamate transporter sites in Alzheimer disease cerebral cortex. J. Neurochem. 64:2193–2202.

    Google Scholar 

  8. Rao, V. L. R., Rao, A. M., Dogan, A., Bowen, K. K., Hatcher, J., Rothstein, J. D., and Dempsey, R. J. 2000. Glial glutamate transporter GLT down-regulation precedes delayed neuronal death in gerbil hippocampus following transient global ischaemia. Neurochem. Int. 36:531–637.

    Google Scholar 

  9. Ferkany, J. and Coyle, J. T. 1986. Heterogeneity of sodiumdependent excitatory amino acid uptake mechanism in rat brain. J. Neurosci. Res. 16:491–503.

    Google Scholar 

  10. Balcar, V. J., Schousboe, A., Spoerri, P. E., and Wolff, J. R. 1987. Differences between substrate specificities of L-glutamate uptake by neurons and glia, studied in cell lines and primary cultures. Neurochem. Int. 10:213–218.

    Google Scholar 

  11. Robinson, M. B. and Dowd, L. A. 1997. Heterogeneity and functional subtypes of Na1–dependent glutamate transporters in the mammalian CNS. Adv. Pharmacol. 37:69–115.

    Google Scholar 

  12. Gegelashvili, G. and Schousboe, A. Cellular distribution and kinetic properties of high affinity glutamate transporters. 1998. Brain Res. Bull. 45:233–238.

    Google Scholar 

  13. Seal, R. P. and Amara, S. G. 1999. Excitatory amino acid transporters: a family in flux. Annual Rev. Pharmacol. Toxicol. 39:431–456.

    Google Scholar 

  14. Isaacson, J. S. and Nicoll, R. A. 1993. The uptake inhibitor L-t-PDC enhances the responses to glutamate but fails to Effect of a Glutamate Transport Inhibitor on Brain Metabolism In Vitro 33 alter the kinetcs of excitatory synaptic currents in the hippocampus. J. Neurophysiol. 70:2187–2191.

    Google Scholar 

  15. Tong, G. and Jahr, C. E. 1994. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13:1195–1203.

    Google Scholar 

  16. Diamond, J. S. and Jahr, C. E. 2000. J. Synaptically released glutamate does not overwhelm transporters on hippocampal astrocytes during high-frequency stimulation. Neurophysiol. 83, 2835–2843.

    Google Scholar 

  17. Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23:1261–1276.

    Google Scholar 

  18. Rothstein, J. D., Jin, L., Dykes-Hoberg, M., and Kuncl, R. W. 1993. Chronic glutamate uptake inhibition produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90:6591–6595.

    Google Scholar 

  19. Blitzblau, R., Gupta, S., Djali, S., Robinson, M. B., and Rosenberg, D. A. 1996. The glutamate transport inhibitor L-t-2,4–PDC indirectly evokes NMDA-receptor mediated neurotoxicity in rat cortical cultures. Eur. J. Neurosci. 8:1840–1852.

    Google Scholar 

  20. Massieu, L., Morales-Villagran, A., and Tapia, R. 1995. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. J. Neurochem. 64:2262–2272.

    Google Scholar 

  21. Ong, W. Y., Motin, L. G., Hansen, M. A., Diaz, J. S., Bennett, M. R., and Balcar, V. J. 1997. A P2 purinoceptor blocker suramin antagonizes NMDA receptors and protects against excitatory behaviour caused by NMDA receptor agonist (RS)-(tetrazol-5–yl)-glycine in rats. J. Neurosci. Res. 49:627–637.

    Google Scholar 

  22. Bruno, V., Copani, A., Battaglia, G., Raffaele, R., Shinozaki, H., and Nicoletti, F. 1994. Protective effect of the metabotropic glutamate receptor agonist, DCG-IV, against excitotoxic neuronal death. Eur. J. Pharmacol. 256:109–112.

    Google Scholar 

  23. Bond, A., O'Neill, M. J., Hicks, C. A., Mon, J. A., and Lodge, D. 1998. Neuroprotective effects of a systemically active group II metabotropic glutamate receptor agonist LY354740 in a gerbil model of global ischaemia. Neuroreport 9:1191–1193.

    Google Scholar 

  24. Behrens, M. M., Strasser, U., Heidiger, V., Lobner, D., Yu, S. P., McDonald, J. W., Won, M., and Choi, D. W. 1999. Selective activation of group II mGluRs with LY354740 does not prevent neuronal excitotoxicity. Neuropharmacol. 38:1621–1630.

    Google Scholar 

  25. Pliss, L., FitzGibbon, T., Balcar, V. J., and Štastný, F. 2000. Neurotoxicity of NAAG in vivo is sensitive to NMDA antagonists and mGluR II ligands. NeuroReport 11:3651–3654.

    Google Scholar 

  26. Cartmell, J. and Schoepp, D. D. 2000. Regulation of neurotransmitter release by etabotropic glutamate receptors. J. Neurochem. 75:889–907.

    Google Scholar 

  27. Johnston, G. A. R., Lodge, D., Bornstein, J. C., and Curtis, D. R. 1980. Potentiation of L-glutamate and L-aspartate excitation of cat spinal neurones by the stereoisomers of threo-3–hydroxyaspartate. J. Neurochem. 34:241–243.

    Google Scholar 

  28. Lievens, J. C., Dutertre, M., Forni, C., Salin, P., and Kerkorian-LeGoff, L. 1997. Continuous administration of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4–dicarboxylate produces striatal lesion. Mol. Brain Res. 50:181–189.

    Google Scholar 

  29. Garcia, O. and Massieu, L. 2001. Strategies for neuroprotection against L-trans-pyrrolidine-2,4–dicarboxylate-induced neuronal damage during energy impairment in vitro. J. Neurosci. Res. 64:418–428.

    Google Scholar 

  30. Rae, C., Lawrence, M. L., Diaz, L. S., Provis, T., Bubb, W. A., and Balcar, V. J. 2000. Strategies for studies of neurotoxic mechanisms involving deficient transport of L-glutamate: Antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pig brain slices. Brain Res. Bull. 53:373–381.

    Google Scholar 

  31. Fowden, L., Smith, A., Millington, D. S., and Sheppard, R. C. 1969. Cyclopropane amino acids from Aesculus and Blighia. Phytochem. 6:437–443.

    Google Scholar 

  32. Pellicciari, R., Natalini, B., Marinozzi, M., Selvi, L., Chiorri, C., Monahan, J. B., Lanthorn, T. H., and Snyder, J. P. 1988. 3,4–Cyclopropyl glutamates as conformationally restricted agonists of the NMDA receptor. Pages 67–70, in Cavalheiro, E. A., Lehman, L., and Turski, L. (eds.), Frontiers in Excitatory Amino Acid Research, Alan Liss, Inc., New York.

    Google Scholar 

  33. Nakamura, Y., Kataoka, Y., Ishida, M., and Shinozaki, H. 1993. (2S,3S,4R)-2–(carboxycyclopropyl)glycine, a potent and competitive inhibitor of both glial and neuronal uptake of glutamate. Neuropharmacol. 32:833–837.

    Google Scholar 

  34. Robinson, M. B., Sinor, J. D., Dowd, L. A., and Kerwin, J. F., Jr. 1993. Subtypes of sodium-dependent high affinity L-3Hglutamate transport activity: pharmacologic specificity and regulation by potassium and sodium. J. Neurochem. 50:167–179.

    Google Scholar 

  35. Dunlop, J., Lou, Z., and McIlvain, H. B. 1999. Properties of excitatory amino acid transport in the human U373 astrocytoma cell line. Brain Res. 839:235–242.

    Google Scholar 

  36. Lieb, I., Chebib, M., Cooper, B., Diaz, L. S., and Balcar, V. J. 2000. Quantitative autoradiography of Na+-dependent [3H]Laspartate binding to L-glutamate transporters in rat brain: structure-activity studies using L-trans-pyrrolidine-2,4–dicarboxylate (L-t-PDC) and 2–(carboxycyclopropyl)-glycine (CCG). Neurochem. Int. 36:319–327.

    Google Scholar 

  37. Balcar, V. J., Li, Y., and Killinger, S. 1995. Effects of L-transpyrrolidine-2,4–dicarboxylate and L-threo-3–hydroxyaspartate on the binding of [3H]L-aspartate, [3H]a-amino-3–hydroxy-5–methyl-4–isoxazolepropionate (AMPA), [3H]DL-(E)-2–amino-4–propyl-5–phosphono-3–pentenoate (CGP 39653), [3H]6–cyano-7–nitroquinoxaline-2,3–dione (CNQX) and [3H]kainate studied by autoradiography in rat forebrain. Neurochem. Int. 26:155–164.

    Google Scholar 

  38. Killinger, S., Blum, G. L., Bohart, A., Bested, A. Dias, L. S., Cooper, B., Allan, R. D., and Balcar, V. J. 1996. Autoradiographic studies indicate regional variations in the characteristics of L-glutamate transporters in rat brain. Neurosci. Lett. 216:101–104.

    Google Scholar 

  39. Shimamoto, K., Lebrun, B., Yasuda-Katamani, Y., Sakaitani, M., Shigeri, Y., Yumoto, N., and Nakajima, T. 1998. DL-threob-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53:195–201.

    Google Scholar 

  40. Shimamoto, K., Shigeri, Y., Yasuda-Kamatani, Y., Lebrun, B., Yumoto, N., and Nakajima, T. 2000. Syntheses of optically pure beta-hydroxyaspartate derivatives as glutamate transporter blockers. Bioorg. Med. Chem. Lett. 53:2407–2410.

    Google Scholar 

  41. Robinson, M. B. 1999. The family of sodium-dependent glutamate transporters: A focus on GLT-1/EAAT2 subtype. Neurochem. Int. 26:155–164.

    Google Scholar 

  42. Vandenberg, R. J. 1999. Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol. 25:393–400.

    Google Scholar 

  43. Vandenberg, R. J., Arriza, J. L., Amara, S. G., and Kavanaugh, M. P. 1995. Constitutive ion fluxes and substrate binding domains of human glutamate transporters. J. biol. Chem. 270:17668–17671.

    Google Scholar 

  44. Balcar, V. J. and Li, Y. 1992. Heterogeneity of high affinity uptake of L-glutamate and L-aspartate in the mammalian central nervous system. Life Sci. 51:1467–1478.

    Google Scholar 

  45. Badar-Goffer, R. S., Bachelard, H. S., and Morris, P. G. 1990. Cerebral metabolism of acetate and glucose studied by 13C-n.m.r. spectroscopy. Biochem. J. 266:133–139.

    Google Scholar 

  46. Kupce, E. and Freeman, R. 1995. Adiabatic pulses for wideband inversion and broadband decoupling. J. Magn. Res. A 115:273–276.

    Google Scholar 

  47. Skinner, T. E. and Bendall, M. R. 1997. A phase-cycling algorithm for reducing sidebands in adiabatic decoupling. J. Magn. Res. 124:474–478.

    Google Scholar 

  48. Wilker, W., Leibfritz, D., Kerssenbaum, R., and Bermel, W. 1993. Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Res. Chem. 31:287–292.

    Google Scholar 

  49. Sonnewald, U., Hertz, L., and Schousboe, A. 1998. Mitochondrial heterogeneity in the brain at the cellular level. J. Cereb. Blood Flow Metab. 18:231–237.

    Google Scholar 

  50. Shimamoto, K., Ishida, M., Shinozaki, H., and Ohfune, Y. 1991. Synthesis of four diastereomeric L-2–(carboxycyclopropyl) glycines. Conformationally constrained L-glutamate analogs. J. Org. Chem. 56:4167–4176.

    Google Scholar 

  51. Rife, J., Ortuno, R. M., and Lajoi, G. A. 1999. Stereoselective synthesis of L-2–(carboxycyclopropyl)glycines via stereocontrolled 1,3–dipolar cycloadditions of diazomethane on 1,3–dipolar cyclo additions of diazomethane on Z-and E-3,4–L-didehydroglutamates OBO esters. J. Org. Chem. 64:8958–8961.

    Google Scholar 

  52. Balcar, V. J., Twitchin, B., and Johnston, G. A. R. 1977. Stereospecificity of the inhibition of L-glutamate and L-aspartate high affinity uptake in rat brain slices by threo-3–hydroxyaspartate. J. Neurochem. 28:1145–1146.

    Google Scholar 

  53. Rothstein, J. D., Martin, L. J., Levey, A. I., and Dykes-Hoberg, M., 1994. Localization of neuronal and glial glutamate transporters. Neuron 13:713–725.

    Google Scholar 

  54. Lehre, K. P., Levey, L. M., Ottersen, O. P., Storm-Mathisen, J., and Danbolt, N. C. 1995. Differential expression of two glial glutamate transporters in the rat brain. J. Neurosci. 15:1835–1853.

    Google Scholar 

  55. Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65:1–105.

    Google Scholar 

  56. Balcar, V. J. and Johnston, G. A. R. 1975. High affinity uptake of L-glutamine in rat brain slices. J. Neurochem. 24:875–879.

    Google Scholar 

  57. Mennerick, S., Dhond, R. P. Benz, A., Xu, W., Rothstein, J. D., Danbolt, N. C., Isenberg, K. E., and Zorumski, C. F. 1998. Neuronal expression of the glutamate transporter GLT-1 in hipocampal microcultures. J. Neurosci. 18:4490–4499.

    Google Scholar 

  58. Meaney, J., Balcar, V. J., Rothstein, J. D., and Jeffrey, P. L. 1998. Glutamate transport in cultures from developing avian cerebellum. J. Neurosci. Res. 54:595–603.

    Google Scholar 

  59. Northington, F. J., Traystman, R. J., Krehler, R. C., and Martin, L. J. 1999. GLT-1, glial glutamate transporter, is transiently expressed in neurons and develops astrocyte specificity only after midgestation in the ovine fetal brain. J. Neurobiol. 39:515–526.

    Google Scholar 

  60. Plachez, C., Danbolt, N. C., and Recasens, M. 2000. Transient expression of the glial glutamate transporters GLAST and GLT-1 in hippocampal neurons in primary culture. J. Neurosci. Res. 59:587–593.

    Google Scholar 

  61. Schmitt, A., Asan, E., Püschel, B., Jons, Th., and Kugler, P. 1996. Expression of the glutamate transporter GLT-1 in neural cells of the rat central nervous system. Neurosci. 71:989–1004.

    Google Scholar 

  62. Schmitt, A., Asan, E., Püschel, B., and Kugler, P. 1997. Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: non-radioactive in situ hybridization and comparative immunocytochemistry. J. Neurosci. 17:1–10.

    Google Scholar 

  63. Johanson, S. O., Li, Y., and Balcar, V. J. 1995. Glutamate decarboxylase solubilized from the rat cerebral cortex by two different concentrations of Triton X-100: Effects of glutamate analogues and analysis by SDS-PAGE/Western blotting using GAD6 and K2 antibodies. Neurochem. Int. 26:179–185.

    Google Scholar 

  64. Pellerin, L. and Magistretti, P. J. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Nat. Acad. Sci. USA 91:10625–10629.

    Google Scholar 

  65. Debernardi, R., Magistretti, P. J., and Pellerin, L. 1999. Trans-inhibition of glutamate transport prevents excitatory amino acid-induced glycolysis in astrocytes. Brain Res. 850:39–46.

    Google Scholar 

  66. Jabaudon, D., Shimamoto, K., Yasumi-Kamatani, Y., Scanziani, M., Gähwiler, B. H., and Gerber, U. 1999. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Nat. Acad. Sci. USA 96:8733–8738.

    Google Scholar 

  67. Jabaudon, D., Scanziani, M., Gähwiler, B. H., and Gerber, U. 2000. Acute decrease in net glutamate uptake during energy deprivation. Proc. Nat. Acad. Sci. USA 97:5610–5615.

    Google Scholar 

  68. Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. 1999. Astrocytes: Glutamate producers for neurons. J. Neurosci. Res. 57:417–42.

    Google Scholar 

  69. Dunlop, J. 2001. Substrate exchange properties of the high affinity glutamate transporter EAAT2. J. Neurosci. Res. 66:482–486.

    Google Scholar 

  70. Takamoto, A., Quiggin, L. B., Lieb, I., Shave, E., Balcar V. J., and Yoneda, Y. 2001. Differences between D-and L-aspartate binding to the Na1–dependent binding sites on glutamate transporters in frozen sections of rat brain. Life Sci., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moussa, C.EH., Mitrovic, A.D., Vandenberg, R.J. et al. Effects of L-Glutamate Transport Inhibition by a Conformationally Restricted Glutamate Analogue (2S,1'S,2'R)-2-(Carboxycyclopropyl)Glycine (L-CCG III) on Metabolism in Brain Tissue In Vitro Analysed by NMR Spectroscopy. Neurochem Res 27, 27–35 (2002). https://doi.org/10.1023/A:1014842303583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014842303583

Navigation