Skip to main content
Log in

Key roles of pH and calcium metabolism in microbial carbonate precipitation

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

This paper reviews the general mechanismsof microbial carbonate precipitation and offersan alternative view on the role of calciummetabolism in this process, as well as on theoccurrence of species- and environment-specificcalcification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boquet E, Boronat A & Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature (Lond.) 246: 527-529

    Google Scholar 

  • Castanier S, Le Métayer-Levrel G & Perthuisot JP (1999) Cacarbonates precipitation and limestone genesis-the microbiologist point of view. Sediment. Geol. 126(1-4): 9-23

    Google Scholar 

  • Desrosiers MG, Gately LJ, Gambel AM & Menick DR (1996) Purification and characterisation of the Ca2+-ATPase of Flavobacterium odoratum. J. Biol. Chem. 271(7): 3945-3951

    Google Scholar 

  • Douglas S & Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol. Ecol. 26(2): 79-88

    Google Scholar 

  • Erlich HL (1998) Geomicrobiology: Its significance for geology. Earth Sci. Rev. 45: 45-60

    Google Scholar 

  • Ferrer RM, Quevedo-Sarmiento J, Rivadeneyra MA, Bejar V, Delgado R & Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr. Microbiol. 17: 221-227

    Google Scholar 

  • Fujita Y, Ferris EG, Lawson RD, Colwell FS & Smith RW (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17(4): 305-318

    Google Scholar 

  • Herbaud M-L, Guiseppi A, Denizot F, Haiech J & Kilhoffer MC (1998) Calcium signalling in Bacillus subtillis. Biochim. Biophys. Acta-Mol. Cell. Res. 1448(2): 212-226

    Google Scholar 

  • Holland IB, Jones HE, Cambell AK & Jacq A (1999) An assessment of the role of intracellular free Ca2+ in E. coli. Biochimie 81: 901-907

    Google Scholar 

  • Kaufman EN, Little MH & Selvaraj PJ (1996) Recycling of FGD gypsum to calcium carbonate and elemental sulphur using mixed sulphate-reducing bacteria with sewage digest as carbon source. J. Chem. Technol. Biotechnol. 66(4): 365-374

    Google Scholar 

  • Kile DE, Eberl DD, Hoch AR & Reddy MM (2000) An assessment of calcite crystal growth mechanisms based on crystal size distributions. Geochim. Cosmochim. Acta 64(17): 2937-2950

    Google Scholar 

  • Kramer G, Klingler HC & Steiner GE (2000) Role of bacteria in the development of kidney stones. Curr. Opin. Urol. 10(1): 35-38

    Google Scholar 

  • McConnaughey TA & Whelan FF (1997) Calcification generates protons for nutrient an bicarbonate uptake. Earth Sci. Rev. 42: 95-117

    Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XD, Maechling CR & Zare RN (1996) Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273: 924-930

    Google Scholar 

  • Morita RY (1980) Calcite precipitation by marine bacteria. Geomicrobiol. J. 2: 63-82

    Google Scholar 

  • Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K & Norman N (1996) Calcium signalling in bacteria. J. Bacteriol. 178(13): 3677-3682

    Google Scholar 

  • Peckman J, Paul J & Thiel V (1999) Bacterially mediated formation of diagenetic aragonite and native sulphur in Zechstein carbonates (Upper Permian, Central Germany). Sediment. Geol. 126(1-4): 205-222

    Google Scholar 

  • Rivadeneyra MA, Delgado R, Del Moral A, Ferrer RM & Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol. Ecol. 13: 197-204

    Google Scholar 

  • Schultze-Lam S, Fortin D, Davis BS & Beveridge TJ (1996) Mineralisation of bacterial surfaces. Chem. Geol. 132: 171-181

    Google Scholar 

  • Stocks-Fisher S, Galinat JK & Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31: 1563-1571

    Google Scholar 

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA & Karpoff AM (2000) Bacterial induced dolomite precipitation in anoxic culture experiments. Geol. 28(12): 1091-1094

    Google Scholar 

  • Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment. Geol. 126(1-4): 147-157

    Google Scholar 

  • Vali H., McKee MD, Çiftçioglu N, Sears K, Plows F, Chevet E, Ghiabi P, Plavsic M, Kajander O & Zare R (2001) Nanoforms: A new type of protein-associated mineralization. Geochim. Cosmochim. Acta 65(1): 63-74

    Google Scholar 

  • Yates KK & Robbins LL (1999) Radioisotope tracer studies of inorganic carbon and Ca in microbiologically derived CaCO3. Geochim. Cosmochim. Acta 63(1): 129-136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Verstraete*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammes, F., Verstraete*, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Re/Views in Environmental Science and Bio/Technology 1, 3–7 (2002). https://doi.org/10.1023/A:1015135629155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015135629155

Navigation