Skip to main content
Log in

Letter: Density Perturbations in a Universe Dominated by the Chaplygin Gas

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study the fate of density perturbations in a Universe dominate by the Chaplygin gas, which exhibit negative pressure. In opposition to other models of perfect fluid with negative pressure, there is no instability in the small wavelength limit, due to the fact that the sound velocity for the Chaplygin gas is positive. We show that it is possible to obtain the value for the density contrast observed in large scale structure of the Universe by fixing a free parameter in the equation of state of this gas. The negative character of pressure must be significant only very recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Battaner, E. and Florido, E. The rotation curve of spiral galaxies and its cosmological implications, astro-ph/0010475.

  2. Frampton, P. H. Quintessence and cosmic microwave background, astro-ph/0102344.

  3. Riess, A. G. et al. Observational evidence from supernovae for an accelerating Universe and a cosmological constant, astro-ph/9805201.

  4. Permutter, S. et al. (1998). Astrophys. J. 517, 565.

    Google Scholar 

  5. Vilenkin, A. and Shellard, E. P. S. (1994). Cosmic strings and other topological defects, Cambridge University Press, Cambridge.

    Google Scholar 

  6. Caldwell, R. R., Dave, R., Steinhardt, P. (1998). Phys. Rev. Lett. 80, 1582.

    Google Scholar 

  7. Carroll, S. M. The cosmological constant, astro-ph/0004075.

  8. Bouchet, F. R., Peter, P., Riazuelo, A. and Sakellariadou, M. Evidence against or for topological defects in the Boomerang data., astro-ph/0005022.

  9. Brax, Ph. and Martin, J. (1999). Phys. Lett. B468, 40.

    Google Scholar 

  10. Kamenshchik, A., Moschella, U. and Pasquier, V. An alternative to quintessence, gr-qc/0103004.

  11. Bordemann, M. and Hoppe, J. (1993). Phys. Lett. B317, 315.

    Google Scholar 

  12. Ogawa, N. (2000). Phys. Rev. D62, 085023.

    Google Scholar 

  13. Jackiw, R. A particle field theorist's lectures on supersymmetric, non-abelian fluid mechanics and d-branes, physics/0010042.

  14. Mukhanov, V. F., Feldman, H. A., and Brandenberger, R. H. (1992). Phys. Rep. 215, 203.

    Google Scholar 

  15. Peebles, P. J. E. (1980). The large-scale structure of the Universe, Princeton University Press, New Jersey.

    Google Scholar 

  16. Weinberg, S. (1972). Gravitation and cosmology, Wiley, New York.

    Google Scholar 

  17. Fabris, J. C. and Martin, J. (1997). Phys. Rev. D55, 5205.

    Google Scholar 

  18. Fabris, J. C., Gonçalves, S. V. B. and Tomimura, N. A. (2000). Class. Quant. Grav. 17, 2983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fabris, J., Gonçalves, S. & de Souza, P. Letter: Density Perturbations in a Universe Dominated by the Chaplygin Gas. General Relativity and Gravitation 34, 53–63 (2002). https://doi.org/10.1023/A:1015266421750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015266421750

Navigation