Skip to main content
Log in

Comparison of Oxidation-Growth Stresses in NiO Film Measured by Deflection and Calculated Using Creep Analysis or Finite-Element Modeling

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

An attempt was made to determine the strain and the stresses generated by the growth of an oxide film using several approaches: an experimental one by means of deflection tests and modeling using either a recently developed creep analysis or a finite-element simulation. A new deflection apparatus was developed and NiO growth studied during the early stages of oxidation of a Ni80Cr20 alloy at 900°C, since many microstructural, kinetics and mechanical data are available for this system. The comparison of experiments and modeling indicate that the oxide layers are mostly subjected to compressive stresses when NiO is growing and the stress level and evolution clearly show that viscoplastic strain occurs in both the substrate and the oxide during oxidation. The comparison between the two modeling approaches with experiment leads to good agreement and suggests that the compressive-growth stresses derive from the lateral expansion of the fraction of new oxide that is formed within the oxide layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. L. Bernstein, Met. Trans. A18, 975 (1987).

    Google Scholar 

  2. A. M. Huntz, Mater. Sci. Technol. 4, 1079 (1988).

    Google Scholar 

  3. J. G. Goedjen, D. A. Shores, and J. H. Stout, Mater. Sci. Eng. A222, 58 (1997).

    Google Scholar 

  4. H. E. Evans and A. M. Huntz, Mater. High Temp. 12, 111 (1994).

    Google Scholar 

  5. F. H. Stott and A. Atkinson, Mater. High Temp. 12, 195 (1994).

    Google Scholar 

  6. C. Liu, A. M. Huntz, and J. L. Lebrun, Mater. Sci. Eng. A160, 113 (1993).

    Google Scholar 

  7. A. M. Huntz, S. Daghigh, A. Piant, and J. L. Lebrun, Mater. Sci. Eng. A248, 44 (1998).

    Google Scholar 

  8. J. K. Wright, R. L. Williamson, D. Renusch, B. Veal, M. Grimsditch, P. Y. Hou, and R. M. Cannon, Mater. Sci. Eng. A262, 246 (1999).

    Google Scholar 

  9. H. E. Evans, Mater. Sci. Eng. A203, 117 (1995).

    Google Scholar 

  10. S. R. J. Saunders, H. E. Evans, M. Li, D. D. Gohil, and S. Osgerby, Oxid. Met. 48, 189 (1997).

    Google Scholar 

  11. D. Delaunay, A. M. Huntz, and P. Lacombe, Corros. Sci. 20, 1109 (1980).

    Google Scholar 

  12. J. G. Zhao and A. M. Huntz, J. Mater. Sci. 19, 3166 (1984).

    Google Scholar 

  13. F. Antoni, M. Pons, M. Ignat, and D. Hertz, Surf. Coat. Technol. 46, 347 (1991).

    Google Scholar 

  14. G. Calvarin Amiri, R. Molins, and A. M. Huntz, Oxid. Met. 53, 25 (2000).

    Google Scholar 

  15. G. Calvarin Amiri, A. F. Gourgues, R. Molins, and A. M. Huntz, Mater. Sci. Eng. A298, 200 (2001).

    Google Scholar 

  16. M. Parise, O. Sicardy, and G. Cailletaud, J. Nucl. Mater. 256, 35 (1998).

    Google Scholar 

  17. A. M. Huntz, J. Mater. Sci. Lett. 18, 1981 (1999).

    Google Scholar 

  18. A. Norin, Oxid. Met. 9, 259 (1975).

    Google Scholar 

  19. A. Aubry, F. Armanet, G. Béranger, J. L. Lebrun, and G. Maeder, Acta. Met. 36, 2779 (1988).

    Google Scholar 

  20. S. J. Bull, Oxid. Met. 49, 1 (1998).

    Google Scholar 

  21. V. K. Yolpygo and D. R. Clarke, Oxid. Met. 49, 187 (1998).

    Google Scholar 

  22. C. Sarioglu, E. Schumann, J. R. Blachere, F. S. Pettit, and G. H. Meier, Mater. High Temp. 17, 109 (2000).

    Google Scholar 

  23. M. Li, T. Li, W. Gao, and Z. Liu, Oxid. Met. 51, 333 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntz, A.M., Calvarin Amiri, G., Evans, H.E. et al. Comparison of Oxidation-Growth Stresses in NiO Film Measured by Deflection and Calculated Using Creep Analysis or Finite-Element Modeling. Oxidation of Metals 57, 499–521 (2002). https://doi.org/10.1023/A:1015352421890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015352421890

Navigation