Skip to main content
Log in

Group Symmetry in Interior-Point Methods for Semidefinite Program

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

A class of group symmetric Semi-Definite Program (SDP) is introduced by using the framework of group representation theory. It is proved that the central path and several search directions of primal-dual interior-point methods are group symmetric. Preservation of group symmetry along the search direction theoretically guarantees that the numerically obtained optimal solution is group symmetric. As an illustrative example, we show that the optimization problem of a symmetric truss under frequency constraints can be formulated as a group symmetric SDP. Numerical experiments using an interior-point algorithm demonstrate convergence to strictly group symmetric solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton, “Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results,” SIAM J. Optim. vol. 8, pp. 746–768, 1998.

    Google Scholar 

  • J. S. Arora and C. H. Tseng, “IDESIGN User's Manual Ver. 3.5,” Optimal Design Laboratory, The University of Iowa, 1987.

  • M. Beckers and C. Fleury, “A primal-dual approach in truss topology optimization,” Comp. & Struct. vol. 64, pp. 77–88, 1997.

    Google Scholar 

  • A. Beling and S. Verma, “Combinatorial complexity of the central curve,” in Proc. ACM Symposium on Theory of Computing, 1997, pp. 250–255.

  • A. Ben-Tal and M. P. Bendsøe, “A new method for optimal truss topology design,” SIAM J. Optim. vol. 3, no. 2, pp. 322–358, 1993.

    Google Scholar 

  • A. Ben-Tal and A. Nemirovskii, “Robust truss topology optimization via semidefinite programming,” SIAM J. Optim. vol. 7, pp. 991–1016, 1997.

    Google Scholar 

  • M. P. Bendsøe, A. Ben-Tal, and J. Zowe, “Optimization method for truss geometry and topology design,” Struct. Optim. vol. 7, pp. 141–159, 1994.

    Google Scholar 

  • S. Boyd, L. E. Ghaoui, E. Feron, and M. L. Overton, Linear Matrix Inequalities in System and Control Theory, SIAM: Philadelphia, PA, 1994.

    Google Scholar 

  • K. Fujisawa, M. Kojima, and K. Nakata, “Exploiting sparsity in primal-dual interior-point methods for semidefinite programming,” Math. Programming vol. 79, pp. 235–253, 1997.

    Google Scholar 

  • K. Fujisawa, M. Kojima, and K. Nakata, “SDPA (Semidefinite Programming Algorithm)–User's Manual,” Tech. Report B-308, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan, 1999.

    Google Scholar 

  • M. Fukuda, M. Kojima, K. Murota, and K. Nakata, “Exploiting sparsity in semidefinite programming via matrix completion I: General framework,” SIAM J. Optim. vol. 11, pp. 647–674, 2000.

    Google Scholar 

  • D. Goldfarb and K. Scheinberg, “Interior point trajectories in semidefinite programming,” SIAM J. Optim. vol. 8, pp. 871–886, 1998.

    Google Scholar 

  • P. Hajela and E. Lee, “Genetic algorithms in truss topological optimization,” Int. J. Solids Structures vol. 32, no. 22, pp. 3341–3357, 1995.

    Google Scholar 

  • M. Halická, “Analytical properties of the central path at boundary point in linear programming,” Math. Programming vol. 84, pp. 335–355, 1999.

    Google Scholar 

  • E. J. Haug and K. K. Choi, “Systematic occurrence of repeated eigenvalues in structural optimization,” J. Optimization Theory and Appl. vol. 38, pp. 251–274, 1982.

    Google Scholar 

  • C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz, “An interior-point method for semidefinite programming,” SIAM J. Optim. vol. 6, pp. 342–361, 1996.

    Google Scholar 

  • K. Ikeda and K. Murota, Imperfect Bifurcation in Structures and Materials–Engineering Use of Group-theoretic Bifurcation Theory, Springer-Verlag: Berlin, 2002.

    Google Scholar 

  • K. Ikeda, K. Murota, and H. Fujii, “Bifurcation hierarchy of symmetric structures,” Int. J. Solids Struct. vol. 27, pp. 1551–1573, 1991

    Google Scholar 

  • F. Jarre, M. Kocvara, and J. Zowe, “Optimal truss topology design by interior-point methods,” SIAM J. Optim. vol. 8, pp. 1084–1107, 1998.

    Google Scholar 

  • Y. Kanno, M. Ohsaki, and N. Katoh, “Symmetricity of the solution of semidefinite program,” Struct. Multidisc. Optim. to appear. Also AIS Research Report 00-01, Architectural Information Systems Laboratory, Kyoto University, Japan, 2000.

    Google Scholar 

  • U. Kirsch, “Optimal topologies of truss structures,” Appl. Mech. Rev. vol. 42, pp. 223–239, 1989.

    Google Scholar 

  • M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point algorithm for linear programming,” in Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, N. Megiddo, ed., Springer-Verlag: New York, pp. 29–47, 1989.

    Google Scholar 

  • M. Kojima, M. Shida, and S. Shindoh, “A note on the Nesterov-Todd and Kojima-Shindoh-Hara search directions in semidefinite programming,” Optimization Methods and Software vol. 11/12, pp. 47–52, 1999.

    Google Scholar 

  • M. Kojima, S. Shindoh, and S. Hara, “Interior-point methods for the monotone semidefinite linear complementarity problems,” SIAM J. Optim. vol. 7, pp. 86–125, 1997.

    Google Scholar 

  • M. Kojima and L. Tunçel, “On the finite convergence of successive SDP relaxation methods,” Tech. Report B-354, Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Japan, 1999.

    Google Scholar 

  • M. Kojima and L. Tunçel, “Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization problems,” Math. Programming vol. 89, pp. 79–111, 2000.

    Google Scholar 

  • A. S. Lewis and M. L. Overton, “Eigenvalue optimization,” Acta Numerica vol. 5, pp. 149–190, 1996.

    Google Scholar 

  • N. Megiddo, “Pathways to the optimal set in linear programming,” in Progress in Mathematical Programming: Interior-Point Algorithms and Related Methods, N. Megiddo, ed., Springer-Verlag: New York, pp. 131–158, 1989.

    Google Scholar 

  • S. Mehrotra, “On the implementation of a primal-dual interior point method,” SIAM J. Optim. vol. 2, pp. 575–601, 1992.

    Google Scholar 

  • W. Miller, Jr., Symmetry Groups and Their Applications, Academic Press: New York, 1971.

    Google Scholar 

  • R. D. C. Monteiro, “Primal-dual path-following algorithms for semidefinite programming,” SIAM J. Optim. vol. 7, pp. 663–678, 1997.

    Google Scholar 

  • R. D. C. Monteiro and Y. Zhang, “A unified analysis for a class of long-step primal-dual path-following interiorpoint algorithms for semidefinite programming,” Math. Programming vol. 81, pp. 291–299, 1998.

    Google Scholar 

  • K. Murota and K. Ikeda, “Critical imperfection of symmetric structures,” SIAM J. Appl. Math. vol. 51, pp. 1222–1254, 1991a.

    Google Scholar 

  • K. Murota and K. Ikeda, “Computational use of group theory in bifurcation analysis of symmetric structures,” SIAM J. Sci. Stat. Comput. vol. 12, pp. 273–297, 1991b.

    Google Scholar 

  • K. Murota and K. Ikeda, “On random imperfections for structures of regular-polygonal symmetry,” SIAM J. Appl. Math. vol. 52, pp. 1780–1803, 1992.

    Google Scholar 

  • T. Nakamura and M. Ohsaki, “A natural generator of optimum topology of plane trusses for specified fundamental frequency,” Comp. Meth. Appl. Mech. Engng. vol. 94, pp. 113–129, 1992.

    Google Scholar 

  • Yu. E. Nesterov and A. S. Nemirovskii, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM: Philadelphia, PA, 1994.

    Google Scholar 

  • Yu. E. Nesterov and M. J. Todd, “Self-scaled barriers and interior-point methods in convex programming,” Math. Oper. Res. vol. 22, pp. 1–42, 1997.

    Google Scholar 

  • M. Ohsaki, “Genetic algorithm for topology optimization of trusses,” Comput. & Struct. vol. 57, pp. 219–225, 1995.

    Google Scholar 

  • M. Ohsaki, “Optimization of geometrically non-linear symmetric systems with coincident critical points,” Int. J. Numer. Methods Engng. vol. 48, pp. 1345–1357, 2000.

    Google Scholar 

  • M. Ohsaki, K. Fujisawa, N. Katoh, and Y. Kanno, “Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints,” Comput. Meth. Appl. Mech. Engng. vol. 180, pp. 203–217, 1999.

    Google Scholar 

  • G. I. N. Rozvany, Optimal Design of Flexural Systems, Pergamon Press: Oxford, UK, 1976.

    Google Scholar 

  • G. I. N. Rozvany, Structural Design via Optimality Criteria, Kluwer Academic Publishers: Norwell, MA, 1989.

    Google Scholar 

  • G. I. N. Rozvany, “Difficulties in truss topology optimization with stress, local buckling and system stability constraints,” Struct. Optim. vol. 11, pp. 213–214, 1996.

    Google Scholar 

  • G. I. N. Rozvany (ed.), Topology Optimization in Structural Mechanics, CISM Courses and Lectures, vol. 374, Springer: Berlin, 1997.

    Google Scholar 

  • A. P. Seyranian, E. Lund, and N. Olhoff, “Multiple eigenvalues in structural optimization problem,” Struct. Optim. vol. 8, pp. 207–227, 1994.

    Google Scholar 

  • J. F. Sturm and S. Zhang, “Symmetric primal-dual path following algorithms for semidefinite programming,” Applied Numerical Mathematics vol. 29, pp. 301–315, 1999.

    Google Scholar 

  • H. Tagawa and M. Ohsaki, “A continuous topology transition model for shape optimization of plane trusses with uniform cross-sectional area,” short paper in Proc. of 3rd WCSMO, 1999, pp. 254–256.

  • M. J. Todd, K. C. Toh, and R. H. Tütüncü, “On the Nesterov-Todd direction in semidefinite programming,” SIAM J. Optim. vol. 8, pp. 769–796, 1998.

    Google Scholar 

  • B. H. V. Topping, “Mathematical programming techniques for shape optimization of skeletal structures,” in Shape and Layout Optimization of Structural Systems and Optimality Criteria Methods,G. I. N. Rozvany, ed., Springer: Berlin, pp. 349–375, 1992.

    Google Scholar 

  • B. H. V. Topping, A. I. Khan, and J. P. Leite, “Topological design of truss structures using simulated annealing,” Struct. Engng. Rev. vol. 8, pp. 301–314, 1996.

    Google Scholar 

  • L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM Review vol. 38, pp. 49–95, 1996.

    Google Scholar 

  • M. Zhou, “Difficulties in truss topology optimization with stress and local buckling constraints,” Struct. Optim. vol. 11, pp. 134–136, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanno, Y., Ohsaki, M., Murota, K. et al. Group Symmetry in Interior-Point Methods for Semidefinite Program. Optimization and Engineering 2, 293–320 (2001). https://doi.org/10.1023/A:1015366416311

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015366416311

Navigation