Skip to main content
Log in

Formation and volatilisation of alkyl-iodidesand -selenides in macrotidal estuaries

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The occurrence of alkylated volatile iodide andselenide species was evidenced and investigatedin water, sediments and overlying atmosphere ofthree major European estuaries, such as theGironde (F), the Rhine (NL) and the Scheldt(B/NL), along with the salinity gradient. Foriodine, up to eight volatile species wereobserved as alkyl-iodides in estuarine waters.The major one (ca. 40%) was methyl-iodide(MeI) with average seasonal concentrationsranging from 1 to 100 pmol l−1. Otherspecies observed were found to correspond toseveral halomethane derivatives and lightalkyl-iodide species. For selenium, dimethylselenide (Me2Se) was the main compound(ca. 90%) over three methyl-selenidesencountered in estuarine waters. Me2Seaverage seasonal concentrations were found torange between 0.2 and 100 pmol l−1 in thewater column. The occurrence of methylatediodides and selenides seems to be mainlyrelated to the algae's biomass turnover asindicated by photosynthetic pigment tracers(i.e. chlorophyll a and phaeopigments) andseasonal variation of surface waterconcentrations. The production and release ofgaseous iodide and selenide compounds may thenresult from natural biological pathways leadingto the methylation of their inorganic form.Finally, significant volatilisation rates wereevaluated leading to average seasonal fluxrates for total volatile iodide and selenidecompounds ranging from 4 to 100 and from 1 to75 nmol m−2 d−1, respectively.Estuarine mass balance estimated from MeI andMe2Se distributions indicates thatvolatilisation to the atmosphere represents aprimary sink for MeI and Me2Se fromestuarine surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amouroux D & Donard OFX (1996) Maritime emission of selenium to the atmosphere in eastern Mediterranean seas. Geophys. Res. Lett. 23: 1777–1780

    Google Scholar 

  • Amouroux D & Donard OFX (1997) Evasion of selenium to the atmosphere via biomethylation processes in the Gironde estuary, France. Mar. Chem. 58: 173–188

    Google Scholar 

  • Amouroux D, Tessier E, Pécheyran C & Donard OFX (1998) Sampling and probing volatile metal(oid) species in natural waters by in-situ purge and trapping followed by gas chromatography and inductively coupled plasma mass spectrometry (P-CT-GC-ICPMS). Anal. Chim. Acta 377: 241–254

    Google Scholar 

  • Amouroux D, Pécheyran C & Donard OFX (2000a) Formation of volatile selenium species in synthetic seawater under light and dark experimental conditions. Appl. Organomet. Chem. 14: 236–244

    Google Scholar 

  • Amouroux D, Tessier E & Donard OFX (2000b) Volatilization of organotin compounds from estuarine and coastal environments. Environ. Sci. Technol. 34: 988–995

    Google Scholar 

  • Amouroux D, Liss PS, Tessier E, Hamren-Larsson M & Donard OFX (2001) Role of oceans as biogenic sources of selenium. Earth Planet. Sci. Let. 189: 277–283

    Google Scholar 

  • Boyle EA, Collier R, Dengler AT, Edmond JM, Ng AC & Stallard RF (1974) On the chemical mass balance in estuaries. Geochim. Cosmo. Acta 38: 1719–1728

    Google Scholar 

  • Chasteen TG (1993) Confusion between dimethyl selenyl sulfide and dimethyl selenone released by bacteria. Appl. Organomet. Chem. 7: 335–342

    Google Scholar 

  • Chasteen TG (1998) Volatile chemical species of selenium. In: Frankenberger WT Jr & Enberg RA (Eds) Environmental Chemistry of Selenium (pp 589–612). Marcel Dekker, New York

    Google Scholar 

  • Clark JF, Schlosser P, Simpson HJ, Stute M, Wanninkof R & Ho DT (1995) Relationship between gas transfer velocities and wind speeds in the tidal Hudson River by the dual tracer technique. In: Jaehne B & Monahan E (Eds) Air-water Gas Transfer (pp 785–800). Aeon Verlag, Hanau

    Google Scholar 

  • Cooke TD & Bruland KW(1987) Aquatic chemistry of selenium: Evidence of biomethylation. Environ. Sci. Technol. 21: 1214–1219

    Google Scholar 

  • Cutter GA & Bruland KW (1984) Marine biogeochemistry of selenium: A re-evaluation. Limnol. Oceanogr. 29: 11799–1192

    Google Scholar 

  • Edmonds JS & Morita M (1998) The determination of iodine species in environmental and biological samples. Pure & Appl. Chem. 70: 1567–1584

    Google Scholar 

  • Frankenberger WT Jr & Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT Jr & Benson S (Eds) Selenium in the Environment (pp 369–387). Marcel Dekker, New York

    Google Scholar 

  • Frankignoulle M & Middelburg JJ (2002) Biogases in tidal European estuaries: the BIOGEST project. Biogeochem. 59: 1–4

    Google Scholar 

  • Frieden E (1991) Iodine and the thyroid hormones. Trends Biochem Sci. 16: 50–53

    Google Scholar 

  • Gan J, Yates SR, Ohr HD & Sims JJ (1997) Volatilization and distribution of methyl iodide and methyl bromide after subsoil application. J. Environ. Qual. 26: 1107–1115

    Google Scholar 

  • Gribble GW (1992) Naturally occurring organohalogen compounds-a survey. J. Natural Prod. 55: 1353–1395

    Google Scholar 

  • Grosko W & Moore RM (1998) A semipermeable membrane equilibrator for halomethanes in seawater. Chemosphere 36: 3083–3092

    Google Scholar 

  • Happell JD & Wallace DWR (1996) Methyl iodide in the Greenland/Norwegian seas and the tropical Atlantic ocean: Evidence for photochemical production. Geophys. Res. Lett. 23: 2105–2108

    Google Scholar 

  • Institut Français de Recherche et d'Exploitation de la Mer (IFREMER) (1994) Estuaire de la Gironde, livre blanc. IFREMER Eds, Brest, Final Rep. 115 pp

  • Karlson U & Frankenberger WT Jr (1993) Biological alkylation of selenium and tellurium. In: Sigel H & Sigel A (Eds) Metal ions in Biological Systems (pp 185–228). Marcel Dekker, New York

    Google Scholar 

  • Kaul LW & Froelich PN Jr (1984) Modeling nutrient geochemistry in a simple system. Geochim. Cosmochim. Acta 48: 1417–1433

    Google Scholar 

  • Keppler F, Eiden R, Niedan V, Pracht J & Schöler HF (2000) Halocarbons produced by natural oxidation processes during degradation of organic matter. Nature 403: 298–301

    Google Scholar 

  • Kirk KL (1991) Biochemistry of the Elemental Halogens and Inorganic Halides (378 pp). Plenum Press, New York

    Google Scholar 

  • Kramer KJM & Duinker JC (1988) The Rhine/Meuse estuary. In Salomons W, Bayne B, Duursma EK & Forstner U (Eds) Pollution of the North Sea: an Assessment (pp 194–212). Springer-verlag, Berlin

    Google Scholar 

  • Lemaire E, Abril G, de Wit R & Etcheber H (2002) Distribution of phytoplankton pigments in nine European estuaries and implications for an estuarine typology. Biogeochem. 59: 5–23

    Google Scholar 

  • Liss PS & Merlivat L (1986) Air-sea gas exchange rates: introduction and synthesis. In: Buat-Ménard P (Ed) The Role of Air-sea Exchange in Geochemical Cycling (pp 113–127). D Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Liss PS (1986) The air-sea gas exchange of low molecular weight halocarbon gases. In: Buat-Ménard P (Ed) The Role of Air-sea Exchange in Geochemical Cycling (pp 283–294). D Reidel Publishing Company, Dordrecht

    Google Scholar 

  • Lovelock JE, Maggs RJ & Wade RJ (1973) Halogenated halocarbons in and over the Atlantic. Nature 241: 194–196

    Google Scholar 

  • Manley SL & Dastoor MN (1987) Methyl halide (CH3X) production from the giant kelp Macrocystis, and estimates of global CH3X production by kelp. Limnol. Oceanogr. 32: 709–715

    Google Scholar 

  • Manley SL & Dastoor MN (1988) Methyl iodide (CH3I) production by kelp and associated microbes. Mar. Biol. 98: 477–482

    Google Scholar 

  • Manley SL & de la Cuesta J (1997) Methyl iodide (CH3I) production from marine phytoplankton cultures. Limnol. Oceanogr. 42: 142–147

    Google Scholar 

  • Moore RM & Zafiriou O (1994) Photochemical production of methyl iodide in seawater. J. Geophys. Res. 99: 16415–16420

    Google Scholar 

  • Moore RM, Webb M, Tokarczyk R & Wever R (1996) Bromoperoxidase and iodoperoxidase enzymes and production of halogenated methanes in marine diatom cultures. J. Geophys. Res. 101: 20899–20908

    Google Scholar 

  • Moore RM & Groszko W (1999) Methyl iodide distribution in the ocean and fluxes to the atmosphere. J. Geophys. Res. 104: 11163–11171

    Google Scholar 

  • Mosher BW & Duce RA (1987) Atmospheric selenium: Distribution and ocean to atmosphere flux in the Pacific. J. Geophys. Res. 92: 13277–13287

    Google Scholar 

  • Ohr HD, Sims JJ, Grech NM, Ole Becker J & McGiffen, Jr ME (1996) Methyl iodide, an ozone-safe alternative to methyl bromide as a soil fumigant. Plant. Dis. 80: 731–735

    Google Scholar 

  • Oremland RS (1994) Biogeochemical transformations of selenium in anoxic environments. In: Frankenberger WT Jr & Benson S (Eds) Selenium in the Environment (pp 389–419). Marcel Dekker, New York

    Google Scholar 

  • Pacyna JM (1984) Estimation of the atmospheric emissions of trace elements from anthropogenic sources in Europe. Atmos. Environ. 18: 41–50

    Google Scholar 

  • Pécheyran C, Amouroux D & Donard OFX (1998a) Field determination of volatile selenium species at ultra trace levels in environmental waters by on-line purging, cryofocusing and detection by atomic fluorescence spectroscopy. J. Anal. At. Spectrom. 13: 615–621

    Google Scholar 

  • Pécheyran C, Quetel CR, Martin F & Donard OFX (1998b) Simultaneous Determination of Volatile Metal (Pb, Hg, Sn, In, Ga) and Nonmetal Species (Se, P, As) in Different Atmospheres by Cryofocusing and Detection by ICPMS. Anal. Chem. 70: 2639–2645

    Google Scholar 

  • Rayman MP (2000) The importance to selenium to human health. Lancet 356: 233–241

    Google Scholar 

  • Reamer DC & Zoller WH (1980) Selenium biomethylation products from soil and sewage sludge. Science 208: 500–502

    Google Scholar 

  • Sciare J, Mihalopoulos N & Nguyen BC (2002) Spatial and temporal variability of dissolved sulfur compounds in European estuaries. Biogeochem. 59: 121–141

    Google Scholar 

  • Stadtman TC (1990) Selenium biochemistry. Ann. Rev. Biochem. 59: 111–127

    Google Scholar 

  • Takayanagi K & Cossa D (1985) Behaviour of dissolved iodine in the upper St. Lawrence Estuary. Can. J. Earth Sci. 22: 644–646

    Google Scholar 

  • Tessier E, Amouroux D & Donard OFX (2002) Volatile organotin compounds (butylmethyltin) in three European estuaries (Gironde, Rhine, Scheldt). Biogeochem. 59: 161–181

    Google Scholar 

  • Thayer JS, Olson GJ & Brinckman FE (1984) Iodomethane as a potential metal mobilizing agent in nature. Environ. Sci. Technol. 18: 726–729

    Google Scholar 

  • Thompson-Eagle ET & Frankenberger WT Jr (1990) Volatilization of selenium from agricultural evaporation pond water. J. Eviron. Qual. 19: 125–131

    Google Scholar 

  • Thompson-Eagle ET & Frankenberger WT Jr (1991) Selenium biomethylation in an alkaline, saline environment. Water Res. 25: 231–240

    Google Scholar 

  • Tseng CM, Amouroux D, Abril G, Etcheber H & Donard OFX (2001) Speciation of mercury in a fluid mud profile of a highly turbid macrotidal estuary (Gironde, France). Environ. Sci. Technol. 35: 2627–2633

    Google Scholar 

  • Wollast R (1988) The Scheldt estuary. In: Salomons W, Bayne B, Duursma EK & Forstner U (Eds) Pollution of the North Sea: an Assessment (pp 185–193). Springer-verlag, Berlin

    Google Scholar 

  • Wong GTF & Cheng X-H (1998) Dissolved organic iodine in marine waters: determination, occurrence and analytical implications. Mar. Chem. 59: 271–281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Amouroux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tessier, E., Amouroux, D., Abril, G. et al. Formation and volatilisation of alkyl-iodidesand -selenides in macrotidal estuaries. Biogeochemistry 59, 183–206 (2002). https://doi.org/10.1023/A:1015550931365

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015550931365

Navigation