Skip to main content
Log in

Participation of Macrogolstearate 400 Lamellar Phases in Hydrophilic Creams and Vesicles

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In binary Macrogolstearate 400 (MS 400)/water systems, lamellar surfactant arrangements can be detected by polarized light and transmission electron microscopy. As demonstrated by X-ray diffraction and differential scanning calorimetry, the alkyl chains of the emulsifier are in the crystalline state. Ternary systems with liquid paraffin represent optically isotropic, homogeneous o/w creams for a wide composition range. Incorporation of up to 50 mol% cholesterol into the MS 400 lamellar structures leads to a gel-liquid crystalline phase separation within the bilayer, thus enabling the formation of spherical nonionic vesicles. The transition enthalpy of the samples decreases linearly with increasing cholesterol concentrations. The Macrogolstearate 400/cholesterol vesicles proved to be stable in hydrophilic cream systems. Cationic vesicles can be prepared using cetyltrimethylammonium bromide (CTAB) as a charge inducer. Low-CTAB portions are inhomogeneously distributed within the bilayer, as detected by DSC. The results also indicate a perturbation of the alkyl chains packing for the positively charged vesicles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Müller-Goymann. Halbfeste emulsionsähnliche Zustände. SÖFW 110:395 (1984).

    Google Scholar 

  2. C. Müuller-Goymann. The influence of the microstructure on consistency and physical stability of an O/W cream. Acta Pharm. Technol. 33:60 (1987).

    Google Scholar 

  3. H. E. Junginger. Kristalline Gelstrukturen in Cremes. Deutsche Apothekerz. 131:1933 (1991).

    Google Scholar 

  4. B. W. Barry. The control of oil-in-water emulsion consistency using mixed emulsifiers. J. Pharm. Pharmacol. 21:533 (1969).

    Google Scholar 

  5. B. E. Barry. Structure and rheology of emulsions stabilized by mixed emulsifiers. Rheol. Acta 10:96 (1971).

    Google Scholar 

  6. N. Krog and J. B. Lauridsen. Food emulsifiers and their associations with water. In S. Friberg (ed.), Food Emulsions, Marcel Dekker, New York, 1976.

    Google Scholar 

  7. C. Tanford. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley, New York, 1980, p. 132.

    Google Scholar 

  8. C. Müller-Goymann and C. Führer. Participation of liquid crystals in emulsions, creams and gels. 3rd Int. Conf. Pharm. Technol., Paris, 1983.

  9. H. Lautenschläger and J. Rding. Kosmetische Formulierungen mit Phospholipiden und Liposomen—Umfeld und Zusammenhänge, Vortrag anläßlich der SEPAWA-Jahrestagung 1989, Bad Dürkheim, 5.10.1989.

  10. A. Helenius and K. Simons. Solubilization of membranes by detergents. Biochim. Biophys. Acta 415:29 (1975).

    Google Scholar 

  11. A. T. Florence and A. J. Baillie. Non-ionic surfactant vesiles—alternatives to liposomes in drug delivery? In L. F. Prescott and W. S. Nimmo (eds.), Novel Drug Delivery and Its Therapeutic Application, John Wiley, New York, 1989.

    Google Scholar 

  12. A. D. Bangham, M. M. Standish, and J. C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238 (1965).

    Google Scholar 

  13. H. Junginger, W. Heering, C. Führer, and I. Geffers. Transmissionsmikroskopische Untersuchungen kolloider Salben-und Cremestrukturen. Beitr. elektronenmikroskop. Direktabb.Oberfl. 14:465 (1981).

    Google Scholar 

  14. C. Müller-Goymann and C. Führer. Flüssigkristalline Mesophasen in cholesterolhaltigen Cremes und ihr elektronenmikroskopisches Erscheinungsbild. Acta Pharm. Technol. 28:243 (1982).

    Google Scholar 

  15. A. Tardieu and V. Luzzati. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. Mol. Biol. 75:711 (1973).

    Google Scholar 

  16. S. M. Small. Observations on lecithin. Phase equilibria and structure of dry and hydrated egg lecithin. J. Lipid Res. 8:551 (1967).

    Google Scholar 

  17. E. Sackmann. Physikalische und chemische Charakterisierung von Liposomen, Vortrag im Rahmen des APV Seminars Liposomen und Niosomen in Pharmazie und Kosmetik, Nürnberg 14–16 May 1990.

  18. J. L. Ranck, L. Mateu, D. M. Sadler, A. Tardieu, T. Gulik-Krzywicki, and V. Luzzati. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 85:249 (1974).

    Google Scholar 

  19. V. Paspaleeva-Küuhn. Assoziationsverhalten von Macrogolstearat 400 in wäßrigen Systemen—zur Kenntnis von Tensidgelen, hydrophilen Cremes und Vesikeln, Thesis, Universität Erlangen-Nürnberg, Germany, 1991.

  20. Deutscher Arzneimittel Codex (1989).

  21. D. Papahadjopoulos and H. K. Kemoelberg. Phospholipid vesicles (liposomes) as models for biological membranes: Their properties and interactions with cholesterol and proteins. Progr. Surg. Sci. 4:141 (1973).

    Google Scholar 

  22. E. Sackmann. Physical basis of trigger processes and membrane structures. In D. Chapmann (ed.), Biological Membranes, Vol. 5, Academic Press, London, 1984.

    Google Scholar 

  23. H. Eibl and A. Blume. The influence of charge on phosphatidic acid bilayer membranes. Biochim. Biophys. Acta 553:476(1979).

    Google Scholar 

  24. C. Tanford. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, John Wiley, New York, 1980, p. 121.

    Google Scholar 

  25. W. M. Bertling, M. Gareis, V. Paspaleeva, A. Zimmer, H. Kreuter, E. Nürnberg, and P. Harrer. Use of liposomes, viral capsids and nanoparticles as DNA carriers. Biotechnol. Appl. Biochem. 13:390 (1991).

    Google Scholar 

  26. J. Funk, F. Wunderlich, and W. Kreutz. Thermotropic “two-stage” liquid crystalline-crystalline lipid phase separation in microsomal membranes. Biochim. Biophys. Acta 690:306 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paspaleeva-Kühn, V., Nürnberg, E. Participation of Macrogolstearate 400 Lamellar Phases in Hydrophilic Creams and Vesicles. Pharm Res 9, 1336–1340 (1992). https://doi.org/10.1023/A:1015821821009

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015821821009

Navigation