Skip to main content
Log in

Temperature and pressure dependences of the elastic properties of ceramic boron carbide (B4C)

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Pulse-echo-overlap measurements of ultrasonic wave velocity have been used to determine the elastic stiffness moduli and related elastic properties of ceramic boron carbide (B4C) as functions of temperature in the range 160–295 K and hydrostatic pressure up to 0.2 GPa at room temperature. B4C is an elastically stiff but extremely light ceramic: at 295 K, the longitudinal stiffness (C L), shear stiffness (μ), adiabatic bulk modulus (B S), Young's modulus (E) and Poisson's ratio (σ) are 498 GPa, 193 GPa, 241 GPa, 457 GPa and 0.184, respectively. In general, the adiabatic bulk modulus B S agrees well with both experimental and theoretical values determined previously and is approximately constant over the measured temperature range. Both E and μ increase with decreasing temperature and do not show any unusual effects. The values determined at 295 K for the hydrostatic-pressure derivatives (∂ C L/∂P) P=O , (∂μ/∂P) P=O and (∂B S/∂P) P=O are 5.7 ± 0.3, 0.78 ± 0.4 and 4.67 ± 0.3, respectively. The hydrostatic-pressure derivative (∂B S/∂P) P=O of the bulk modulus is found to be comparable with that estimated previously from dynamic yield strength measurements. The effects of hydrostatic pressure on the ultrasonic wave velocity have been used to determine the hydrostatic-pressure derivatives of elastic stiffnesses and the acoustic-mode Grü neisen parameters. The longitudinal (γL), shear (γS), and mean (γel) acoustic-mode Grüneisen parameters of B4C are positive: the zone-centre acoustic phonons stiffen under pressure in the usual way. Knowledge of the elastic and nonlinear acoustic properties sheds light on the thermal properties of ceramic B4C. Since the acoustic Debye temperature ΘD (=1480 K) is very high, the shear modes provide a substantial contribution to the acoustic phonon population at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. THÉVENOT, J. Eur. Ceram. Soc. 6 (1990) 205.

    Google Scholar 

  2. R. THOMPSON, “The Physics and Chemistry of Carbides; Nitrides and Borides,” edited by R. Freer (Kluwer Academic Publishers, Netherlands, 1990) p. 113.

    Google Scholar 

  3. R. A. MURGATROYD and B. T. KELLY, Atomic Energy Review 15 (1977) 1.

    Google Scholar 

  4. G. W. HOLLENBERG, Am. Ceram. Soc. Bull. 59 (1980) 538, 548.

    Google Scholar 

  5. D. EMIN, Physics Today 40 (1987) 55.

    Google Scholar 

  6. H. WERHEIT, “The Physics and Chemistry of Carbides; Nitrides and Borides,” edited by R. Freer (Kluwer Academic Publishers, Netherlands, 1990) p. 677.

    Google Scholar 

  7. D. EMIN, “The Physics and Chemistry of Carbides; Nitrides and Borides,” edited by R. Freer (Kluwer Academic Publishers, Netherlands, 1990) p. 691.

    Google Scholar 

  8. K. A. SCHWETZ and W. GRELLNER, J. Less-Common Metals 82 (1981) 37.

    Google Scholar 

  9. R. J. NELMES, J. S. LOVEDAY, R. M. WILSON, W. G. MARSHALL, J. M. BESSON, S. KLOTZ, G. HAMEL, T. L. ASELAGE and S. HULL, Phys. Rev. Lett. 74 (1995) 2268.

    PubMed  Google Scholar 

  10. N. VAST, J. M. BESSON, S. BARONI and A. DAL CORSO, Comp. Mat. Sci. 17 (2000) 127.

    Google Scholar 

  11. T. L. ASELAGE, D. R. TALLANT, J. H. GIESKE, S. B. VAN DEUSEN and R. G. TISSOT, “The Physics and Chemistry of Carbides; Nitrides and Borides,” edited by R. Freer (Kluwer Academic Publishers, Netherlands, 1990) p. 97.

    Google Scholar 

  12. G. W. HOLLENBERG and G. WALTHER, J. Amer. Ceram. Soc. 63 (1980) 610.

    Google Scholar 

  13. B. CHAMPAGNE and R. ANGERS, ibid. 62 (1979) 149.

    Google Scholar 

  14. R. S. LIEBLING, Mat. Res. Bull. 2 (1967) 1035.

    Google Scholar 

  15. S. R. MURTHY, J. Mater. Sci. Lett. 4 (1985) 603.

    Google Scholar 

  16. W. H. GUST and E. B. ROYCE, J. Appl. Phys. 42 (1971) 276.

    Google Scholar 

  17. E. P. PAPADAKIS,J. Acoust. Soc. Am. 42 (1967) 1045.

    Google Scholar 

  18. E. KITTINGER, Ultrasonics 15 (1977) 30.

    Google Scholar 

  19. R. N. THURSTON and K. BRUGGER, Phys. Rev. 133 (1964) A1604.

    Google Scholar 

  20. M. YAMASHITA, J. Phys. E: Sci. Instrum. 20 (1987) 1457.

    Google Scholar 

  21. P. T. B. SHAFFER, “High Temperature Materials” (Plenum Press, 1964).

  22. T. L. ASELAGE, D. EMIN, G. A. SAMARA, D. R. ALLANT, S. B. VAN DEUSEN, M. O. EATOUGH, H. L. TARDY, E. L. VENTURINI and S. M. JOHNSON, Phys. Rev. B 48 (1993) 11759.

    Google Scholar 

  23. M. BOUCHACOURT and F. THEVENOT, J. Mats. Sci. 20 (1985) 1237.

    Google Scholar 

  24. C. WOOD and D. EMIN, Phys. Rev. B 29 (1984) 4582.

    Google Scholar 

  25. G. A. SAMARA, D. EMIN and C. WOOD, ibid. 32 (1985) 2315.

    Google Scholar 

  26. T. L. ASELAGE, D. EMIN and S. S. MCCREADY, Phys. Stat. Sol. B 218 (2000) 255.

    Google Scholar 

  27. G. DE WITH, J. Mater. Sci. 19 (1984) 457.

    Google Scholar 

  28. J. H. GIESKE, T. L. ASELAGE and D. EMIN, “Boron Rich Solids,” edited by D. Emin, T. Aselage, C. L. Beckel, A. C. Switendick and B. Morosin, AIP Conf. Proc. No. 231 (American Institute of Physics, New York, 1991) p. 377.

    Google Scholar 

  29. D. L. ARENBERG, Final report ContractNONR734 (00) (1955), tabulated in “Solid State Physics,” Vol. 7, edited by F. Seitz and D. Turnbull (Academic Press, New York, 1958) p. 316.

    Google Scholar 

  30. I. A. BAIRAMASHVILI, G. I. KALANDADZE, A. M. ERISTAVI, J. SH. JOBAVA, V. V. CHOTULIDI and YU. I. SALOEV, J. Less-Common Metals 67 (1979) 455.

    Google Scholar 

  31. R. N. KATZ and W. A. BRANTLEY, Mat. Sci. Res. 5 (1971) 271.

    Google Scholar 

  32. S. M. LANG, National Bureau of Standards Monograph, Vol. 6 (1960).

  33. D. LI. and W. Y. CHING, Phys. Rev. B 52 (1995) 17073.

    Google Scholar 

  34. S. LEE, D. M. BYLANDER and L. KLEINMAN, ibid. 45 (1992) 3245.

    Google Scholar 

  35. K. SHIRAI, J. Solid State Chem. 133 (1997) 215.

    Google Scholar 

  36. J. J. GANGLER, J. Amer. Ceram. Soc. 33 (1950) 367.

    Google Scholar 

  37. G. V. TSAGAREISHVILI, T. G. NAKASHIDZE, J. SH. JOBAVA, G. P. LOMIDZE, D. E. KHULELIDZE, D. SH. TSAGAREISHVILI and O. A. TSAGAREISHVILI, J. Less-Common Metals 117 (1986) 159.

    Google Scholar 

  38. R. N. THURSTON, Proc. IEEE 53 (1965) 1320.

    Google Scholar 

  39. O. L. ANDERSON, J. Phys. Chem. Solids 24 (1963) 909.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodd, S.P., Saunders, G.A. & James, B. Temperature and pressure dependences of the elastic properties of ceramic boron carbide (B4C). Journal of Materials Science 37, 2731–2736 (2002). https://doi.org/10.1023/A:1015825318086

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015825318086

Keywords

Navigation