Skip to main content
Log in

Direct dyes as molecular sensors to characterize cellulose substrates

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Six dyes were selected based on their molecular structure to test theirsuitability as sensors to characterize the fine structure of cellulosesubstrates. Cotton, mercerized cotton and microcrystalline cellulose werechosento represent a variety of pore structures typically encountered in practicalapplications. Internally available surface areas were calculated. It ispostulated that roughly 25% of the Connolly surface areas (CSA) of the sensorsDirect Blue 1, Direct Blue 14, Direct Blue 53, Direct Red 28, and Direct Red 2and 30% of the CSA of Direct Yellow 4 are representative of the space requiredfor the sensor to dock onto cellulose surfaces. Molecular weight of the dyeprobes does not serve as a good indicator of sensor size. Molecular structureisa critical factor to take into account when selecting a probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ardizzone S., Dioguardi F.S., Mussini T., Mussini P.R., Rondinini S., Vercelli B. et al. 1999. Microcrystalline Cellulose Powders: Structure, Surface Features and Water Sorption Capability. Cellulose 6: 57–69.

    Google Scholar 

  • Bertoniere N.R. and Zeronian S.H. 1987. The Structures of Cellulose: Characterization of the Solid States. In: Atalla R.H. (ed.), ACS Symposium Series 340. American Chemical Society, Washington, DC, pp. 255–271.

    Google Scholar 

  • Bratko D., Cerkvenik J., Span J. and Vesnaver G. 1983. Osmometric Study of Aggregation in Dye Solution. Croatica Chemica Acta 56: 797–801.

    Google Scholar 

  • Bredereck K. and Schumacher C. 1993. Structure Reactivity Correlations of Azo Reactive Dyes Based on H-acid. 1. NMR Chemical Shift Values, pKa Values, Dyestuff Aggregation and Dyeing Behaviour. Dyes and Pigments 21: 23–43.

    Google Scholar 

  • Bredereck K., Blüher A. and Hoffman-Frey A. 1990. Die Bestimmung der Porenstruktur von Cellulosefasern durch Ausschlu _messung. Das Papier 44: 648–656.

    Google Scholar 

  • Bredereck K., Bader E. and Schmitt U. 1989. Die Bestimmung der Porenstruktur Wassergequollener Zellulosefasern durch Ausschlussmessungen und Beziehungen zum Färbeverhalten. Textilveredlung 24: 142–150.

    Google Scholar 

  • Bredereck K., Schick W.A. and Bader E. 1985. Zur Bestimmung der Porenstruktur Wassergequollener Cellulosefasern. Die Makromolekulare Chemie 186: 1643–1655.

    Google Scholar 

  • Brown J.C. 1966. CIBA Review, No. 3.

  • Day J.C., Alince B. and Robertson A.A. 1979. The Characterization of Pore Systems by Macromolecular Penetration. Cellulose Chemistry Technology 13: 317–326.

    Google Scholar 

  • Edge S., Potter U.J., Steele D.F., Tobyn M.J. and Staniforth J.N. 1998. The Use of Modified Resin for Studying the Internal Structure of Micro-crystalline Cellulose Particles. Micron 29: 469–471.

    Google Scholar 

  • Ek R., Alderborn G. and Nyström C. 1994. Particle Analysis of Microcrystalline Cellulose: Differentiation between Individual Particles and Their Agglomerates. International Journal of Pharmaceutics 111: 43–50.

    Google Scholar 

  • Flath H.J. and Scholz C. 1993. Untersuchungen zur Inneren Struktur von Modalfasern. Textilveredlung 28: 9–13.

    Google Scholar 

  • Giles C.H. 1989. Dye-Fibre Bonds and Their Investigation. In: Johnson A. (ed.), The Theory of Coloration of Textiles. Society of Dyers and Colourists, Bradford, UK, pp. 97–168.

    Google Scholar 

  • Hamada K., Yamada K. and Mitsuishi M. 1995. Thermodynamic Study of the Aggregation of Azo Dyes Containing Two Tri-fluoromethyl Groups in Aqueous Solutions. J. Chem. Soc. Faraday Trans. 91: 1601–1605.

    Google Scholar 

  • Hori T. and Zollinger H. 1986. The Role of Water in the Dyeing Process. Textile Chemist and Colorist 18: 19–25.

    Google Scholar 

  • Inglesby M.K. and Zeronian S.H. 2001. Diffusion coefficients of direct dyes in aqueous and polar aprotic solvents by the NMR pulsed-field gradient technique. Dyes and Pigments 50: 3–11.

    Google Scholar 

  • Inglesby M.K., Zeronian S.H. and Elder T.J. 2002. Aggregation of Direct Dyes Investigated by Molecular Modeling. Textile Research Journal (in press).

  • Inglesby M.K. 2000. Sulfonated Chromophores as Molecular Sensors to Characterize Cellulose Substrates. Ph.D. Dissertation, University of California, Davis.

    Google Scholar 

  • Inglesby M.K. and Zeronian S.H. 1996. The Accessibility of Cellulose as Determined by Dye Adsorption. Cellulose 3: 165–181.

    Google Scholar 

  • Iyer S.S.R., Srinivasan G. and Baddi N.T. 1968. The Influence of Different Electrolytes on the Interaction of Chlorazol Sky Blue FF with the Cotton Fiber Surface in Aqueous Solutions. Textile Research Journal 38: 693–700.

    Google Scholar 

  • Lewis D.M. 1998. Dyestuff-Fibre Interactions. Review of Progress in Coloration 28: 12–17.

    Google Scholar 

  • Maekawa M., Kasai K. and Nango M. 1998. Transport Phenomena of Sulfonated Dyes into Cellulose Membranes: Parallel Diffusion of a Sulfonated Dye with a High Affinity onto Cellulose. Colloids and Surfaces, A: Physicochemical and Engineering Aspects 132: 173–179.

    Google Scholar 

  • Morton T.H. 1935. The Dyeing of Cellulose with Direct Dyestuffs; The Importance of the Colloidal Constitution of the Dye Solution and of the Fine Structure of the Fibre. Transactions of the Faraday Society 31: 262–284.

    Google Scholar 

  • Neale S.M., Hanson J. and Stringfellow W.A. 1935. The Absorption of Dyestuffs by Cellulose. Part VI. The Effect of Modification of the Cellulose, and a Theory of the Electrolyte Effect. Transactions of the Faraday Society 31: 1718–1730.

    Google Scholar 

  • Pusik T., Grancaric A.M., Soljacic I. and Ribitsch V. 1999. The Effect of Mercerization on the Electrokinetic Potential of Cotton. Journal of the Society of Dyers and Colourists 115: 121–124.

    Google Scholar 

  • Quensel O. 1935. Comment. Trans. Faraday Soc. 31: 259–260.

    Google Scholar 

  • Robinson C. 1935. The Nature of the Aqueous Solutions of Dyes. Trans. Faraday Soc. 31: 245–261.

    Google Scholar 

  • Rowland S.P., Wade C.P. and Bertoniere N.R. 1984. Pore Structure Analysis of Purified, Sodium Hydroxide-Treated and Liquid Ammonia-Treated Cotton Celluloses. Journal of Applied Polymer Science 29: 3349–3357.

    Google Scholar 

  • Rowland S.P. 1977. Cellulose: Pores, Internal Surfaces, and the Water Interface. In: Arthur Jr. J.C. (ed.), Textile and Paper Technology, ACS Symposium Series Vol. 49. American Chemical Society, Washington, DC, pp. 20–45.

    Google Scholar 

  • Scholz C. and Flath H.J. 1993. Untersuchungen zur Inneren Struktur von Modalfasern. Textilveredlung 28: 9–13.

    Google Scholar 

  • Skowronek M., Roterman I., Konieczny L., Stopa B., Rybarska J. and Piekarska B. 2000. Why do Congo Red, Evans Blue, and Trypan Blue Differ in Their Complexation Properties? Journal of Computational Chemistry 21: 656–667.

    Google Scholar 

  • Sumner H.H. 1989. Thermodynamics of Dye Sorption. In: Johnson A. (ed.), The Theory of Coloration of Textiles. Society of Dyers and Colorists, Bradford, UK.

    Google Scholar 

  • Vickerstaff T. 1954. The Physical Chemistry of Dyeing Interscience Publishers, Inc, New York, NY.

    Google Scholar 

  • Wada M., Okano T. and Sugiyama J. 1997. Synchrotron-radiated X-ray and Neutron Diffraction Study of Native Cellulose. Cellulose 4: 221–232.

    Google Scholar 

  • Woodcock S., Henrissat B. and Sugiyama J. 1995. Docking of Congo Red to the Surface of Crystalline Cellulose Using Molecular Mechanics. Biopolymers 36: 201–210.

    Google Scholar 

  • Yu X. and Atalla R.H. 1998. A Staining Technique for Evaluating the Pore Structure Variations of Microcrystalline Cellulose Powders. Powder Technology 98: 135–138.

    Google Scholar 

  • Zeronian S.H. 1985. Inter-and Intracrystalline Swelling of Cellulose. In: Nevell T.P. and Zeronian S.H. (eds), Cellulose Chemistry and its Applications. Ellis Horwood Ltd, Chichester, UK.

    Google Scholar 

  • Zeronian S.H. 1984. Analysis of the Interaction between Water and Textiles. In: Weaver J.N. (ed.), Analytical Methods for a Textile Laboratory. AATCC, Research Triangle Park, NC, pp. 117–128.

    Google Scholar 

  • Zeronian S.H., Coole M.L., Alger K.W. and Chandler J.M. 1983. Studies on the Water Sorption Isotherms of Celluloses and Their Use for Determining Cellulose Crystallinities. Journal of Applied Polymer Science: Applied Polymer Symposium 37: 1053–1069.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inglesby, M., Zeronian, S. Direct dyes as molecular sensors to characterize cellulose substrates. Cellulose 9, 19–29 (2002). https://doi.org/10.1023/A:1015840111614

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015840111614

Navigation