Skip to main content
Log in

Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→cellulose II

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The mercerization of homogenized primary wall cellulose extracted fromsugar beet pulp was investigated by transmission electron microscopy (TEM),X-ray diffraction together with 13C CP-MAS NMR, and FT-IR spectroscopy.For samples resulting from acid extraction, mercerization began at 9% NaOH, whereasfor samples purified by alkaline treatment, the mercerization started at 10%NaOH. The change in morphology when going from cellulose I to cellulose II wasspectacular, as all the microfibrillar cellulose morphology disappeared duringthe treatment. This change in morphology was very drastic as soon as the NaOHconcentrations were increased beyond 8 and 9% for the acid and alkalinepreparedsamples, respectively. On the other hand, the conversion was found to be moreprogressive in terms of increasing NaOH concentration when the transformationwas analyzed by X-ray diffraction or spectroscopy. Our observations of themercerization of isolated cellulose microfibrils are consistent with theconceptof cellulose microfibrils made of parallel chains in cellulose I and crystalsofcellulose II consisting of antiparallel chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atalla R.H., Gast J.C., Sindorf D.W., Bartuska V.J. and Maciel G.E. 1980. 13C NMR spectra of cellulose polymorphs. J. Am. Chem. Soc. 102: 3249–3251.

    Google Scholar 

  • Cantiani R. and Villemin C. 1999. Buccodental formulation comprising substantially amorphous cellulose nanofibrils, WO Patent 99/15141.

  • Cantiani R., Knipper M. and Vaslin S. 1999. Use of cellulose microfibrils in dry form in food formulations, WO Patent 99/ 21435.

  • Chanzy H. 1975. Structural and morphological aspects of cellulose materials. In: Atkins E.D.T. and Keller A. (eds), Structure of Fibrous Biopolymers. Butterworths, London, pp. 417–434.

    Google Scholar 

  • Chanzy H. 1990. Aspects of cellulose structure. In: Kennedy J.F., Phillips G.O. and Williams P.A. (eds), Cellulose Sources and Exploitation. Industrial Utilization, Biotechnology and Physico-chemical Properties. Ellis Horwood, Chichester, UK, pp. 3–12.

    Google Scholar 

  • Chanzy H. and Henrissat B. 1985. Unidirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett. 184: 285–288.

    Google Scholar 

  • Chanzy H., Henrissat B., Vuong R. and Revol J.-F. 1986. Structural changes of cellulose crystals during the reversible transformation cellulose IFIII in Valonia. Holzforschung 40: 25–30.

    Google Scholar 

  • Chanzy H. and Roche E.J. 1975. Fibrous mercerization of Valonia cellulose. J. Polym. Sci. Phys. Ed. 13: 1859–1862.

    Google Scholar 

  • Chanzy H. and Roche E.J. 1976. Fibrous transformation of Valonia cellulose I into cellulose II. Appl. Polym. Symp. 28: 701–711.

    Google Scholar 

  • Chédin J. and Marsaudon A. 1955. Action of caustic soda solutions on cellulose fibers. Equilibrium fixation of caustic soda. Mercerization. Makromol. Chem. 15: 115–160.

    Google Scholar 

  • Dinand E., Chanzy H. and Vignon M.R. 1996. Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3: 183–188.

    Google Scholar 

  • Dinand E., Chanzy H. and Vignon M.R. 1999a. Suspensions of cellulose microfibrils from sugar beet pulp. Food Hydrocolloids 13: 275–283.

    Google Scholar 

  • Dinand E., Vignon M.R., Chanzy H., Maureaux A. and Vincent I. 1999b. Microfibrillated cellulose and method for preparing a microfibrillated cellulose, US Patent 5964983.

  • Dudley R.L., Fyfe C.A., Stephenson P.J., Deslandes Y., Hamer G.K. and Marchessault R.H. 1983. High resolution 13C CP/ MAS spectra of solid cellulose oligomers and the structure of cellulose II. J. Am. Chem. Soc. 105: 2469–2472.

    Google Scholar 

  • Finkenstadt V.L. and Millane R.P. 1998. Crystal structure of Valonia cellulose Iβ. Macromolecules 31: 7776–7783.

    Google Scholar 

  • French A.D. 1978. The crystal structure of ramie cellulose. Carbohydr. Res. 61: 67–80.

    Google Scholar 

  • Gardner K.H. and Blackwell J. 1974. The structure of native cellulose. Biopolymers 13: 1975–2001.

    Google Scholar 

  • Gessler K., Krauss N., Steiner T., Betzel C., Sarko A. and Saenger W. 1995. β-D cellotetraose hemihydrate as a structural model for cellulose II. An X-ray diffraction study. J. Am. Chem. Soc. 117: 11397–11406.

    Google Scholar 

  • Giertz H.W. 1953. A comparison between sulfite and sulfate pulp. Sv. Papperstidn. 56: 893–899.

    Google Scholar 

  • Goikhman A.Sh., Kaller A.L., Polyakova G.V. and Matsibora N.P. 1978. Composition of hydrated crystals of alkali cellulose. Polymer Science USSR 19: 3000–3005.

    Google Scholar 

  • Haase J., Hosemann R. and Renwanz B. 1974. X-ray wide-and small-angle studies on cellulose. Coll. Polym. Sci. 252: 712–717.

    Google Scholar 

  • Hermans P.H. 1949. Physics and Chemistry of Cellulose Fibres. Elsevier, New York.

    Google Scholar 

  • Heux L., Dinand E. and Vignon M.R. 1999. Structural aspects in ultrathin cellulose microfibrils followed by 13C CP-MAS NMR. Carbohydr. Polym. 40: 115–124.

    Google Scholar 

  • Hieta K., Kuga S. and Usuda M. 1984. Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23: 1807–1810.

    Google Scholar 

  • Hurtubise F.G. and Krässig H. 1960. Classification of fine structural characteristics in cellulose by infrared spectroscopy. Use of potassium bromide pellet technique. Anal. Chem. 32: 177–181.

    Google Scholar 

  • Kolpak F.J. and Blackwell J. 1976. Determination of the structure of cellulose II. Macromolecules 9: 273–278.

    Google Scholar 

  • Krässig H.A. 1993. Cellulose Structure, Accessibility and Reactivity. Gordon and Breach Science Publishers, Yverdon, Switzerland.

    Google Scholar 

  • Kroon-Batenburg L.M.J. and Kroon J. 1995. The crystal and molecular structures of cellulose. Carbohydr. Europe 12: 15–19.

    Google Scholar 

  • Kuga S. and Brown R.M. 1988. Silver labeling of the reducing ends of bacterial cellulose. Carbohydr. Res. 180: 345–350.

    Google Scholar 

  • Langan P., Nishiyama Y. and Chanzy H. 1999. A revised structure and hydrogen-bonding system in cellulose II from a neutron fi-ber diffraction analysis. J. Am. Chem. Soc. 121: 9940–9946.

    Google Scholar 

  • Marhöfer R.J., Reiling S. and Brickmann J. 1996. Computer simulations of crystal structures and elastic properties of cellulose. Ber. Bunsenges. Phys. Chem. 100: 1350–1354.

    Google Scholar 

  • Marchessault R.H. and Howsmon J.A. 1957. Experimental evaluation of the lateral-order distribution in cellulose. Text. Res. J. 27: 30–41.

    Google Scholar 

  • Mercer J. 1850. Improvements in the preparation of cotton and other fabrics and other fibrous materials, Brit. Patent 13296.

  • Newman R.H. 1999. Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Magn. Reson. 15: 21–29.

    Google Scholar 

  • Nicoll W.D., Cox N.L. and Conaway R.F. 1954. In: Ott E., Spurlin H.M. and Grafflin M.W. (eds), Cellulose and Cellulose Derivatives, Part II. Interscience Publishers, New York, pp. 825–871.

    Google Scholar 

  • Nishimura H. and Sarko A. 1987. Mercerization of cellulose. III. Changes in crystallite sizes. J. Appl. Polym. Sci. 33: 855–866.

    Google Scholar 

  • Okano T. and Sarko A. 1985. Mercerization of cellulose. II. Alkalicellulose intermediate and a possible mercerization mechanism. J. Appl. Polym. Sci. 30: 325–332.

    Google Scholar 

  • Purz H.J. and Fink H.P. 1983. Morphology and lattice transition during alkaline treatment of cellulose. Acta Polymerica 34: 546–558.

    Google Scholar 

  • Raymond S., Kvick Å. and Chanzy H. 1995. The structure of cellulose II: a revisit. Macromolecules 28: 8422–8425.

    Google Scholar 

  • Revol J.-F. and Goring D.A.I. 1983. Directionality of the fibre caxis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24: 1547–1550.

    Google Scholar 

  • Revol J.F., Dietrich A. and Goring D.A.I. 1987. Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can. J. Chem. 65: 1724–1725.

    Google Scholar 

  • Roelofsen P.A. 1959. The Plant Cell-Wall. Gebrüder Borntraeger, Berlin-Nikolassee, pp. 126–189.

    Google Scholar 

  • Sarko A. and Muggli R. 1974. Packing analysis of carbohydrates and polysaccharides. III. Valonia cellulose and cellulose II. Macromolecules 7: 486–494.

    Google Scholar 

  • Shibazaki H., Kuga S. and Okano T. 1997. Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4: 75–87.

    Google Scholar 

  • Simon I., Glasser L., Scheraga H.A. and Manley R.St.J. 1988. Structure of cellulose. 2. Low-energy crystalline arrangements. Macromolecules 21: 990–998.

    Google Scholar 

  • Smith B.G., Harris P.J., Melton L.D. and Newman R.H. 1998. Crystalline cellulose in hydrated primary cell walls of three monocotyledons and one dicotyledon. Plant Cell. Physiol. 39: 711–720.

    Google Scholar 

  • Stipanovic A.J. and Sarko A. 1976. Packing analysis of carbohydrates and polysaccharides. 6. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9: 851–857.

    Google Scholar 

  • Sugiyama J., Vuong R. and Chanzy H. 1991. Electron diffraction study on the two crystalline phases occurring in native cellulose from algal cell wall. Macromolecules 24: 4168–4175.

    Google Scholar 

  • Vaslin S., Cantiani R. and Fayos J. 2000. Use of essentially amorphous cellulose nanofibrils as emulsifying and/or stabilising agent, WO Patent 00/16889.

  • Warwicker J.O., Jeffries R., Colbran R.L. and Robinson R.N. 1966. A Review of the Literature on the Effect of Caustic Soda and other Swelling Agents on the Fine Structure of Cotton. Shirley Institute Pamphlet No. 93, Shirley Institute, Didsbury, Manchester.

    Google Scholar 

  • Warwicker J.O. 1967. Effect of chemical reagents on the fine structure of cellulose. Part IV. Action of caustic soda on the fine structure of cotton and ramie. J. Polym. Sci., A1 5: 2579–2593.

    Google Scholar 

  • Warwicker J.O. and Wright A.C. 1967. Function of sheets of cellulose chains in swelling reactions on cellulose. J. Appl. Polym. Sci. 11: 659–671.

    Google Scholar 

  • Warwicker J.O. 1971. Swelling. In: Bikales N.M. and Segal L. (eds), Cellulose and Cellulose Derivatives, Part IV. Wiley Interscience, New York, pp. 325–379.

    Google Scholar 

  • Weibel M.K. 1986. Well drilling and production fluids employing parenchymal cell cellulose, US Patent 4629575.

  • Weibel M.K. and Myers C. 1989. Parenchymal cell cellulose and related materials, US Patent 4831127.

  • Weibel M.K. 1990. Use of parenchymal cell cellulose to improve comestibles, US Patent 4923981.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinand, E., Vignon, M., Chanzy, H. et al. Mercerization of primary wall cellulose and its implication for the conversion of cellulose I→cellulose II. Cellulose 9, 7–18 (2002). https://doi.org/10.1023/A:1015877021688

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015877021688

Navigation