Skip to main content
Log in

Dissolution of lonizable Drugs in Buffered and Unbuffered Solutions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The dissolution kinetics of ionizable drugs (weak acids or bases) are analyzed with a mathematical model derived from the theory of mass transfer with chemical reaction. The model assumes that the overall process is diffusion limited, that all the reactions are reversible and instantaneous, and that dissolution and reaction are limited to the stagnant fluid film adjacent to the solid phase. Dissolution into buffered and unbuffered aqueous solutions are considered separately, with covenient analytical solutions obtained in both cases. In addition, equations for the time to partial and complete dissolution are derived. The dissolution rate is shown to be dependent on the pK a and intrinsic solubility and the medium properties, i.e., pH, buffer capacity, and mass transfer coefficient. Equations of a form analogous to the nonionized case are derived to account explicitly for all these factors, with dissolution rates expressed in terms of the product of a driving force (concentration difference) and resistance (inverse of mass transfer coefficient). The solutions are in an accessible analytical form to calculate the surface pH and subsequently the surface concentrations driving the drug dissolution. Numerical examples to illustrate dissolution into unbuffered and buffered media are presented and the results are shown to be in accord with experimental data taken from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Nernst. Z. Phys. Chem. 47:52–55 (1904).

    Google Scholar 

  2. A. Goldberg, In L. J. Leeson and J. T. Carstensen (eds.), Dissolution Technology, Industrial Pharmaceutical Technology Section, APhA Academy of Pharmaceutical Science, Washington, D.C., 1974.

    Google Scholar 

  3. E. Shek. Pharm. Ind. 40:981–984 (1978).

    Google Scholar 

  4. E. Brunner. Z. Phys. Chem. 47:56–102 (1904).

    Google Scholar 

  5. W. I. Higuchi, L. Parrott, D. E. Wurster, and T. Higuchi. J. Am. Pharm. Assoc. Sci. Ed. 47:376–383 (1958).

    Google Scholar 

  6. W. I. Higuchi, E. Nelson, and J. G. Wagner. J. Pharm. Sci. 53:333–335 (1964).

    Google Scholar 

  7. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. J. Pharm. Sci. 70:13–21 (1981).

    Google Scholar 

  8. K. G. Mooney, M. A. Mintun, K. J. Himmelstein, and V. J. Stella. J. Pharm. Sci. 70:22–32 (1981).

    Google Scholar 

  9. J. G. Aunins, M. Z. Southard, R. A. Myers, K. J. Himmelstein, and V. J. Stella. J. Pharm. Sci. 74:1305–1316 (1985).

    Google Scholar 

  10. J. B. Dressman and D. Fleisher. J. Pharm. Sci. 75:109–116 (1986).

    Google Scholar 

  11. W. Nernst and E. Brunner. J. Am. Chem. Soc. 47:52–102 (1904).

    Google Scholar 

  12. A. W. Hixson and J. H. Crowell. Ind. Eng. Chem. 23:923–931 (1931).

    Google Scholar 

  13. R. B. Bird, W. E. Stewart, and E. N. Lightfoot. Transport Phenomena, John Wiley and Sons, New York, 1960.

    Google Scholar 

  14. J. Crank. Mathematics of Diffusion, University Press, Oxford, 1975.

    Google Scholar 

  15. B. O. Palsson. In S. Siedeman and B. Bexar (eds.), Electrochemical Activation, Metabolism and Perfusion of the Heart Simulation and Experimental Models, Martinus Nijhoff, Wordrech/Boston/Lancaster, 1986.

    Google Scholar 

  16. R. Aris. The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, University Press, Oxford, 1975.

    Google Scholar 

  17. C. G. Hill, Jr. An Introduction to Chemical Engineering Kinetics and Reactor Design, John Wiley and Sons, New York, 1977.

    Google Scholar 

  18. T. K. Sherwood, R. L. Pigford, and C. R. Wilke. Mass Transfer, McGraw-Hill, New York, 1975.

    Google Scholar 

  19. V. G. Levich. Physico-chemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ, 1962.

    Google Scholar 

  20. J. Spitael, R. Kinget, and K. Naessens. Pharm. Ind. 42:846–849 (1980).

    Google Scholar 

  21. B. Carnahan, H. A. Luther, and J. O. Wilkes. Applied Numerical Methods, Wiley, New York, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, S.S., Palsson, B.O. & Dressman, J.B. Dissolution of lonizable Drugs in Buffered and Unbuffered Solutions. Pharm Res 5, 272–282 (1988). https://doi.org/10.1023/A:1015970502993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015970502993

Navigation