Skip to main content
Log in

Practical pedotransfer functions for estimating the saturated hydraulic conductivity

  • Published:
Geotechnical & Geological Engineering Aims and scope Submit manuscript

Abstract

The saturated hydraulic conductivity k is one of the most important and widely used geotechnical parameters, commonly involved in a diversity of applications. The value of k depends on many factors, which can be divided into three classes: properties of the fluid, pore size distribution, and characteristics of the solid surfaces. Because the latter two are not necessarily constant within a given deposit, the hydraulic conductivity may vary significantly in space. Engineers and scientists need indications about how changing factors may affect the actual k value. In this paper, the authors propose some simple expressions, based on pedologic properties, to estimate the value of k. Using experimental results of their own and taken from the literature, it is shown that the proposed pedotransfer functions can be used for quickly estimating the k value for granular and plastic/cohesive soils. Such expressions can be employed, with a useful chart format, for the preliminary design phase of a project, and also for estimating the range of k values to be anticipated within a given deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja, L.R., Naney, J.W., Green, R.E. and Nielsen, D.R. (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects on land management, Soil Science Society of America Journal 48, 699–702.

    Google Scholar 

  • Al-Tabbaa, A. and Wood, D.M. (1987) Some measurements of the permeability of kaolin, Géotechnique 37(4), 499–503.

    Google Scholar 

  • Aubertin, M., Bussiè re, B. and Chapuis, R.P. (1996) Hydraulic conductivity of homogenized tailings from hard rock mines, Canadian Geotechnical Journal 33(3), 470–482.

    Google Scholar 

  • Aubertin, M., Chapuis, R.P., Aachib, M., Bussiè re, B., Ricard, J.F. and Tremblay, L. 1995. Évaluation en laboratoire de barriè res sè ches construites à partir de ré sidus miniers. É cole Polytechnique de Montré al, MEND Project 2.22.2a, CANMET, Ottawa, 164 pages.

  • Bear, J. (1972) Dynamics of Fluids in Porous Media, Dover Publications Inc., New York.

    Google Scholar 

  • Benson, H.C. and Trast, J.M. (1995) Hydraulic conductivity of thirteen compacted clays, Clays and Clay Minerals 43(6), 669–681.

    Google Scholar 

  • Beyer, W. (1964) Zur Bestimmung der Wasserdurchlä ssigkeit von Kiesen und Sanden aus der Kornverteilungskurve, WWT, 14, Jahrgang, Heft 6.

  • Budhu, M. (1985) The effect of clay content on liquid limit from a fall cone and the British cup device, Technical Note, Geotechnical Testing Journal 8(2), 91–95.

    Google Scholar 

  • Bussière, B. (1993) É valuation des proprié té s hydrogé ologiques des ré sidus miniers utilisé s comme barriè res de recouvrement, Mémoire de Ma \(\hat \imath \) trise, Dé partement du Gé nie Mineral, É cole Polytechnique de Montré al.

  • Carman, P.C. (1956) Flow of Gas Through Porous Media, Academic Press, Inc., New York.

    Google Scholar 

  • Chapuis, R.P. (2002) The 2000 R.M. Handy Lecture: Full-scale hydraulic performance of soilbentonite and compacted clay liners, Canadian Geotechnical Journal 39(2): 417–439.

    Google Scholar 

  • Chapuis, R.P. and Aubertin, M. (2001) Evaluation of Kozeny-Carman equation to predict the hydraulic conductivity of soils, Submitted for publication to the Canadian Geotechnical Journal.

  • Chapuis, R.P. and Lé garé, P.P. (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of aggregates and mineral filler on asphalt mixture performance, American Society for Testing and Materials, Special Technical Publication 1147, 177–186.

    Google Scholar 

  • Chapuis, R.P. and Montour, I. (1992) É valuation de l'é quation de Kozeny-Carman pour pré dire la conductivité hydraulique, Proceedings, 45ième Conférence Canadienne de Géotechnique. Toronto, Ontario, 78-1-78-10.

  • Chapuis, R.P., Baass, K. and Davenne, L. (1989) Granular soils in rigid-wall permeameters: method for determining the degree of saturation, Canadian Geotechnical Journal 26(1), 71–79.

    Google Scholar 

  • Child, E.C. and Collis-Georges, N. (1950) The permeability of porous materials, Proceedings of the Royal Society of London, Series A 201, 392–405.

    Google Scholar 

  • Chin, D.A. (2000) Water-Resources Engineering, Prentice Hill, Upper Saddle River, N.J.

    Google Scholar 

  • Daniel, D.E. and Benson, C.M. (1990) Water content-density criteria for compacted soil liners, Journal of Geotechnical Engineering, ASCE 116(GT12), 1811–1930.

    Google Scholar 

  • de Campos, T.M.P., Alves, M.C.M. and Azevado, R.F. (1994) Laboratory settling and consolidation of neutralized red mud, 1st International Congress on Environmental Geotechnics, Edmonton, pp. 461–466.

  • De Wiest, R.J.M. (1969) Flow Through Porous Media, Academic Press, New York.

    Google Scholar 

  • Farrar, D.M. and Coleman, J.D. (1967) The correlation of surface area with other properties of 19 British clay soils, Journal of Soil Science 18(1), 118–124.

    Google Scholar 

  • Fetter, C.W. (2001) Applied Hydrogeology, 4th Edition, Upper Saddle River, N.J, Prentice Hall.

    Google Scholar 

  • Fredlund, D.G., Xing, A. and Huang, S. (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve, Canadian Geotechnical Journal 31(4), 533–546.

    Google Scholar 

  • Freeze, A. (1994) Henry Darcy and the fountains of Dijon, Ground Water 32(1), 23–30.

    Google Scholar 

  • Fujiyasu, Y. and Fahey, M. (2000). Experimental Study of evaporation from saline tailings, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 126(1), 18–27.

    Google Scholar 

  • Fukushima, S. and Ishii, T. (1986) An experimental study on the influence of confining pressure on permeability coefficients of filldam core materials, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 26(4), 32–46.

    Google Scholar 

  • Goldin, A.L. and Rasskazov, L.N. (1992) Design of Earth Dams, Geotechnica 2, Ed. A.A. Balkema.

  • Harr, M.E. (1999) Groundwater and seepage: accounting for variability. In The Handbook of Groundwater Engineering, Delleur, J.W. (ed.). CRC Press, Boca Raton, Boston, London, New York, Washington D.C., Chap.4.

    Google Scholar 

  • Hatanaka, M., Uchida, A. and Takehara, N. (1997) Permeability characteristics of highquality undisturbed sands measured in a triaxial cell, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 37(3), 129–135.

    Google Scholar 

  • Hazen, A. (1911) Discussion of dams on sand foundations, Transactions, American Society of Civil Engineers 73, 199–203.

    Google Scholar 

  • Holtz, R.D. and Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering, Prentice-Hall, Engelwood Cliffs.

    Google Scholar 

  • Hubbert, M.K. (1956) Darcy's law and the field equations of flow of underground fluids, Transactions, American Institute of Mining and Metallurgical Engineering 207, 222–239.

    Google Scholar 

  • Ková cs, G. (1981) Seepage Hydraulics, Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Kozeny, J. (1953) Hydraulics, Elsevier Scientific Publication, Amsterdam.

    Google Scholar 

  • Lambe, T.W and Whitman, R.V. (1979) Soil Mechanics, SI version, John Wiley and Sons, New York.

    Google Scholar 

  • Leroueil, S. and Le Bihan, J.-P. (1996) Liquid limits and fall cones, Canadian Geotechnical Journal 33(5), 793–798.

    Google Scholar 

  • Leroueil, S., Bouclin, G., Tavenas, F., Bergeron, L. and La Rochelle, P. (1990) Permeability anisotropy of natural clays as a function of strain, Canadian Geotechnical Journal 27(5), 568–579.

    Google Scholar 

  • Locat, J., Lefebvre, G. and Ballivy, G. (1984) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada, Canadian Geotechnical Journal 21(3), 530–540.

    Google Scholar 

  • Loudon, A.G. (1952) The computation of permeability from simple soil tests, Géotechnique 3(3), 165–183.

    Google Scholar 

  • Marhall, T.J., Holmes, J.W. and Rose, C.W. (1996) Soil physics, 3rd Edition, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Masch, F.D. and Denny, K.J. (1966) Grain size distribution and its effect on the permeability of unconsolidated sands, Water Resources Research 2(4), 665–677.

    Google Scholar 

  • Mbonimpa, M. (1998) Injizierfä higkeit von Feinstbindemittelsuspensionen zur Abdichung von Lockergesteinen, Mitteilungen des Instituts von Grundbau, Bodenmechanik und Energiewasserbau (IGBE), Universitä t Hannover, 50.

  • Mesri, G. and Olson, R.E. (1971) Mechanisms controlling the permeability of clays, Clays and Clay Minerals 19, 151–158.

    Google Scholar 

  • Michaels, A.S. and Lin, C.S. (1954) Permeability of kaolinite, Industrial and Engineering Chemistry 46, 1239–1246.

    Google Scholar 

  • Mitchell, J.K., Hooper, D.R. and Campanella, R.G. (1965) Permeability of compacted clay, ASCE Journal of Soil Mechanics and Foundation Engineering Division 91 (SM4), 41–65.

    Google Scholar 

  • Mualem, Y. (1986) Hydraulic Conductivity of Unsaturated Soils: Prediction and Formulas, in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, 2nd edn, Klute, A. (ed.). Agronomy Monograph No. 9, American Society of Agronomy, Madison, Wis. pp. 799–823.

    Google Scholar 

  • Muhunthan, B. (1991) Liquid limit and surface area of clay, Géotechnique 41(1), 135–138.

    Google Scholar 

  • Nagaraj, T.S, Pandian, N.S. and Narasimha Raju, P.S.R. (1991) An approach for prediction of compressibility and permeability behaviour of sand bentonite mixes, Indian Geotechnical Journal 21(3), 271–282.

    Google Scholar 

  • Nagaraj, T.S., Pandian, N.S. and Narasimha Raju, P.S.R. (1994) Stress-state-permeability relations for overconsolidated clays, Technical Note, Géotechnique 44(2), 349–352.

    Google Scholar 

  • Raymond, G.P. (1966) Laboratory consolidation of some normally consolidated soils, Canadian Geotechnical Journal III(4), 217–234.

    Google Scholar 

  • Rowe, R.K., Armstrong, M.D. and Cullimore, D.R. (2000) Particle size and clogging of granular media permeated with leachate, Journal of Geotechnical and Geoenvironmental Engineering, ASCE 126(9), 775–7860.

    Google Scholar 

  • Samarasinghe, A.M., Huang, Y.H. and Drnevich, V.P. (1982) Permeability of normally consolidated soils, Journal of the Geotechnical Engineering Division, ASCE 118(GT6), 835–850.

    Google Scholar 

  • Schaap, M.G. and Leij, F.J. (1998) Database-related accuracy and uncertainty of pedotransfer functions, Soil Science 163(10), 765–779.

    Google Scholar 

  • Shepherd, R.G. (1989) Correlations of permeability and grain size, Ground Water 27(5), 633–638.

    Google Scholar 

  • Sherrard, J.L., Dunnigan, L.P. and Talbot, J.R. (1984) Basic properties of sand and gravel filters, Journal of Geotechnical Engineering, ASCE 110(6), 684–700.

    Google Scholar 

  • Sherwood, P.T. and Ryley, M.D. (1970) An investigation of a cone-penetrometer method for the determination of the liquid limit, Géotechnique 20(2), 203–208.

    Google Scholar 

  • Sitharam, T.G., Sivapullaiah, P.V. and Subba Rao, K.S. (1995) Shrinkage behaviour of compacted unsaturated soils/Rétraction des sols compactés non saturés, in Unsaturated soils/ Sols non saturés, Vol. I, Alonso, E.E. and Delage, P. (eds). A.A. Balkema, Rotterdam, Brookfield, pp. 195–200.

    Google Scholar 

  • Sivapullaiah, P.V., Sridharan, A. and Stalin, V.K. (2000) Hydraulic conductivity of bentonite sand mixtures, Canadian Geotechnical Journal 37(2), 406–413.

    Google Scholar 

  • Sperry, M.S. and Pierce, J.J. (1995) A model for estimating the hydraulic conductivity of granular material based on grain size, and porosity, Ground Water 33(6), 892–898.

    Google Scholar 

  • Sridharan, A., Nagaraj, H.B. and Prakash, K. (1999) Determination of the plasticity index from flow index, Technical Note, Geotechnical Testing Journal 22(2), 175–181.

    Google Scholar 

  • Sridharan, A., Rao, S.M. and Murthy, N.S. (1986) Liquid limit of Montmorillonite soils, Technical Note, Geotechnical Testing Journal 9(3), 156–159.

    Google Scholar 

  • Tan, S.A. (1989) A simple automatic falling head permeameter, Technical Note, Soils and Foundation, Japanese Society of Soils Mechanics and Foundation Engineering 29(1), 161–164.

    Google Scholar 

  • Tanaka, H. and Locat, J. (1999) A microstructural investigation of Osaka Bay clay: the impact of microfossils on its mechanical behaviour, Canadian Geotechnical Journal 36(3), 493–508.

    Google Scholar 

  • Taylor, D.W. (1948) Fundamentals of Soil Mechanics, John Wiley and Sons, New York.

    Google Scholar 

  • Tieje, O. and Hennings, V. (1996) Accuracy of the saturated hydraulic conductivity prediction by pedotransfer functions compared to the variability within FAO textural classes, Geoderma 69, 71–84.

    Google Scholar 

  • Venkataraman, P. and Rao, P.R.M. (1998) Darcian, transitional, and turbulent flow through porous media, Journal of Hydraulic Engineering 124(8), 840–846.

    Google Scholar 

  • Vuković, M. and Soro, A. (1992) Determination of hydraulic conductivity of porous media from grain-size composition, Water Resources Publications, Littleton, Colorado.

    Google Scholar 

  • Watabe, Y., Leroueil, S. and Le Bihan, J.-P. (2000) Influence of compaction conditions on pore size distribution and saturated hydraulic conductivity, Canadian Geotechnical Journal 37(6), 1184–1194.

    Google Scholar 

  • Wetzel, A. (1990) Interrelationships between porosity and other geotechnical properties of slowly deposited, fine-grained marine surface sediments, Marine Geology 92, 105–113.

    Google Scholar 

  • Wright, S.P., Walden, P.J., Sangha, C.M. and Langdon, N.J. (1996) Observations on soil permeability, moulding moisture content and dry density relationships, Quarterly Journal of Engineering Geology 29, 249–255.

    Google Scholar 

  • Yong, R.P., Mohamed, A.M.O. and Warkentin, B.P. (1992) Principles of contaminant transport in soils, Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Aubertin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mbonimpa, M., Aubertin, M., Chapuis, R.P. et al. Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotechnical and Geological Engineering 20, 235–259 (2002). https://doi.org/10.1023/A:1016046214724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016046214724

Navigation