Skip to main content
Log in

The Thermodynamics of Partitioning of Phenothiazines between Phosphate Buffer and the Lipid Phases of Cyclohexane, n-Octanol and DMPC Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The partitioning of six phenothiazines was determined between phosphate buffer (pH 6.0) and the lipid phases of cyclohexane, n-octanol and dimyristoyl phosphatidylcholine (DMPC). For DMPC liposomes studies were carried out both below and above the phase transition temperature (Tc) of the liposomes. The partitioning of chlorpromazine hydrochloride between n-octanol and phosphate buffer was both pH and concentration-dependent. A linear relationship between the absolute temperature (T−1) and the logarithm of the equilibrium partition coefficient (ln K) was derived. The temperature dependence of the partition coefficient (K) over the temperature range 20–40° C in cyclohexane and n-octanol, and 5–40° C in DMPC liposomes, permitted the calculation of free-energy (G), enthalpy (H) and the entropy (S) of partitioning. Both the entropy and the enthalpy of partitioning of phenothiazines were positive in the three systems studied. In general, the partitioning of phenothiazines in cyclohexane, n-octanol and DMPC liposomes (both above and below the phase transition temperature (Tc)) is entropically controlled. Correlation was not however found between the free-energy of oil-water partitioning and liposome-water partitioning which may be attributed to the formation of surface associated phenothiazine in high concentrations at the liposome water interface. The concentration dependent partitioning of chlorpromazine in DMPC liposomes may be attributed to the adsorbed fraction of drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bingham, A. D. (1968) Prog. Biophys. Mol. Biol., 18, 29–95.

    Google Scholar 

  2. Papahadjopoulos, D., Kimelberg, K. K. (1973) Prog. Surface Sci., 4, 141–232.

    Google Scholar 

  3. Meyer, H. (1899) Arch. Exp. Pathol. Pharmakol., 42, 110.

    Google Scholar 

  4. Overton, E. (1901) Studien über die Narkose, Fischer, Jena, Germany.

    Google Scholar 

  5. Collander, R. (1954) Physiol. Plant., 7, 420.

    Google Scholar 

  6. Burton, D. E., Clark, K., Gray, G. W. (1964) J. Chem. Soc., 1315.

  7. Hansch, C., Quinlan, J. E., Lawrence, G. L. (1968) J. Org. Chem., 33, 347.

    Google Scholar 

  8. Smith, R. N., Hansch, C., Ames, M. (1975) J. Pharm. Sci., 64, 599–606.

    Google Scholar 

  9. Leo, A., Hansch, C., Elkins, D. (1971) Chem. Rev., 71, 525–554.

    Google Scholar 

  10. Hansch, C., Leo, A. (1979) “Substituent Constants for Correlation Analysis in Chemistry and Biology”, Wiley-Interscience, New York.

    Google Scholar 

  11. Murthy, K. S., Zografi, G. (1970) J. Pharm. Sci., 59, 1281–1285.

    Google Scholar 

  12. Vezin, W. R., Florence, A. T. (1979) Int. J. Pharm., 3, 231–237.

    Google Scholar 

  13. Leterrier, F., Kersante, R. (1975) Biochem. Biophys. Res. Commun., 63, 515–521.

    Google Scholar 

  14. Maoi, M., Suzuki, T., Yagi, K. (1979) Biochem. Pharmac., 28, 295–299.

    Google Scholar 

  15. Schwendener, R. T., Weder, H. G. (1978) Biochem. Pharmac., 27, 2721–2727.

    Google Scholar 

  16. Spooner, P. J. R., Olliff, C. J. (1978) J. Pharm. Pharmacol., 30, 38P.

    Google Scholar 

  17. Jain, M. K., Wu, N. M. (1978) Biochim. Biophys. Res. Commun., 81, 1412–1417.

    Google Scholar 

  18. Ahmed, M., Burton, J. S., Hadgraft, J., Kellaway, I. W. (1980) Biochem. Pharmacol., 29, 2361–2363.

    Google Scholar 

  19. Ahmed, M., Burton, J. S., Hadgraft, J., Kellaway, I. W. (1981) J. Memb. Biol., 58, 181–189.

    Google Scholar 

  20. Ahmed, M., Burton, J. S., Hadgraft, J., Kellaway, I. W. (1981) Chem. Phys. Lipids, 27, 251–262.

    Google Scholar 

  21. Stahl, E. (1969) “Thin-Layer Chromatography”, Second Ed., pp. 508–517. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  22. Tinoco, I., Sauer, K., Jr., Wang, J. C. (1978) Physical Chemistry: Principles and Application in Biological Sciences. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  23. Melchior, D. L., Steim, J. M. (1976) Ann. Rev. Biophys. Bioeng., 5, 205–238.

    Google Scholar 

  24. Cohen, B. E., (1975) J. Memb. Biol., 20, 205–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, A.M.S., Farah, F.H. & Kellaway, I.W. The Thermodynamics of Partitioning of Phenothiazines between Phosphate Buffer and the Lipid Phases of Cyclohexane, n-Octanol and DMPC Liposomes. Pharm Res 2, 119–124 (1985). https://doi.org/10.1023/A:1016359215869

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016359215869

Keywords

Navigation