Skip to main content
Log in

Review: Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We define the rest-frame instant form of tetrad gravity restricted to Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of gauge transformations generated by the 14 first class constraints of the theory, we define and solve the multitemporal equations associated with the rotation and space diffeomorphism constraints, finding how the cotriads and their momenta depend on the corresponding gauge variables. This allows to find a quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal gauges and to find the Dirac observables for superspace in these gauges. The construction of the explicit form of the transformation and of the solution of the rotation and supermomentum constraints is reduced to solve a system of elliptic linear and quasi-linear partial differential equations. We then show that the superhamiltonian constraint becomes the Lichnerowicz equation for the conformal factor of the 3-metric and that the last gauge variable is the momentum conjugated to the conformal factor. The gauge transformations generated by the superhamiltonian constraint perform the transitions among the allowed foliations of spacetime, so that the theory is independent from its 3+1 splittings. In the special 3-orthogonal gauge defined by the vanishing of the conformal factor momentum we determine the final Dirac observables for the gravitational field even if we are not able to solve the Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted to this completely fixed gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Lusanna, L., and Russo, S. (2002). “A New Parametrization for Tetrad Gravity” (GR-QC/ 0102074), Gen. Rel. Grav. 34 189.

  2. Lusanna, L., and Russo, S., “Tetrad Gravity: I) A New Formulation,” Firenze Univ. preprint (GR-QC/9807072).

  3. Lusanna, L., and Russo, S., “Tetrad Gravity: II) Dirac's Observables,” Firenze Univ. preprint (GR-QC/9807073).

  4. De Pietri, R., and Lusanna, L., “Tetrad Gravity III: Asymptotic Poincar´e Charges, the Physical Hamiltonian and Void Spacetimes,” Firenze Univ. preprint (GR-QC/9909025).

  5. Arnowitt, R., Deser, S., and Misner, C.W. (1960). Phys. Rev. 117, 1595; (1962) in “Gravitation: an Introduction to Current Research,” ed. Witten, L. (Wiley, New York).

    Google Scholar 

  6. Lusanna, L. (2001). “The Rest-Frame Instant Form of Metric Gravity,” Gen. Rel. Grav. 33, 1579.

    Google Scholar 

  7. Dirac, P. A. M. (1950). Can. J. Math. 2, 129; (1964) Lectures on Quantum Mechanics,” Belfer Graduate School of Science, Monographs Series (Yeshiva University, New York, N.Y.).

    Google Scholar 

  8. Anderson, J. L., and Bergmann, P. G. (1951). Phys. Rev. 83, 1018. Bergmann, P. G., and Goldberg, J. (1955). Phys. Rev. 98, 531.

    Google Scholar 

  9. Lusanna, L., (1990). Phys. Rep. 185, 1; (1991) Riv. Nuovo Cimento 14, n. 3, 1; (1990) J. Math. Phys. 31, 2126; (1990) J. Math. Phys. 31, 428. (1992) Contemp. Math. 132, 531.

    Google Scholar 

  10. Lusanna, L., “Towards a Unified Description of the Four Interactions inTerms of Dirac-Bergmann Observables,” invited contribution to the book “Quantum Field Theory: a 20th Century Profile,” of the Indian National Science Academy, ed. A. N. Mitra, foreward F. J. Dyson (Hindustan Book Agency, New Delhi) (HEP-TH/9907081). “Tetrad Gravity and Dirac's Observables,” talk given at the Conf. “Constraint Dynamics and Quantum Gravity 99,”Villasimius 1999, eds.V. DeAlfaro, J. E. Nelson, M. Cadoni, M. Cavaglia’ and A. T. Filippov, (2000). Nucl. Phys. B (Proc. Suppl.) 88, 301 (GR-QC/9912091). “The Rest-Frame Instant Form of Dynamics and Dirac's Observables,” talk given at the Int. Workshop “Physical Variables in Gauge Theories,” Dubna 1999. “Solving Gauss' Laws and Searching Dirac Observables for the Four Interactions,” talk at the “Second Conf. on Constrained Dynamics and Quantum Gravity,” S. Margherita Ligure 1996, eds. V. De Alfaro, J. E. Nelson, G. Bandelloni, A. Blasi, M. Cavagli`a and A. T. Filippov, (1997). Nucl. Phys. B (Proc.Suppl.) 57, 13 (HEP-TH/9702114). “Unified Description and Canonical Reduction to Dirac's Observables of the Four Interactions,” talk at the Int. Workshop “New non Perturbative Methods and Quantization on the Light Cone', Les Houches School 1997, eds. P. Grang´e, H. C. Pauli, A. Neveu, S. Pinsky and A. Werner (Springer, Berlin, 1998) (HEP-TH/9705154). “The Pseudoclassical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Gauge,” talk at the Euroconference QCD97, ed. S. Narison, Montpellier 1997, (1998) Nucl. Phys. B (Proc. Suppl.) 64, 306.

    Google Scholar 

  11. Shanmugadhasan, S. (1973). J. Math. Phys. 14, 677. Lusanna, L. (1993). Int. J. Mod. Phys. A 8, 4193.

    Google Scholar 

  12. Chaichian, M., Louis Martinez, D., and Lusanna, L. (1994). Ann. Phys. (N.Y.) 232, 40.

    Google Scholar 

  13. Kuchar, K. (1976). J. Math. Phys. 17, 777, 792, 801; (1977) 18, 1589.

    Google Scholar 

  14. Dirac, P. A. M. (1949). Rev. Mod. Phys. 21, 392.

    Google Scholar 

  15. Lusanna, L. (1997). Int. J. Mod. Phys. A 12, 645.

    Google Scholar 

  16. Crater, H., and Lusanna, L. (2001). Ann. Phys. (NY) 289, 87 (HEP-TH/0001046). Alba, D., Crater, H., and Lusanna, L. (2001). Int. J. Mod. Phys. A 16, 3365 (HEP-TH/0103109).

    Google Scholar 

  17. Lusanna, L. (1995). Int. J. Mod. Phys. A 10, 3531 and 3675.

    Google Scholar 

  18. Møller, C. (1949). Ann. Inst. H. Poincar´e 11, 251; (1957) “The Theory of Relativity” (Oxford Univ. Press, Oxford).

    Google Scholar 

  19. Christodoulou, D., and Klainerman, S. (1993) “The Global Nonlinear Stability of the Minkowski Space” (Princeton University Press, Princeton).

    Google Scholar 

  20. Nakahara, M. (1990). “Geometry, Topology and Physics” (IOP, Bristol).

    Google Scholar 

  21. O'Neil, B. (1983). “Semi-Riemannian Geometry” (Academic Press, New York).

    Google Scholar 

  22. Bleecker, D. (1981). “Gauge Theory and Variational Principles” (Addison-Wesley, London).

    Google Scholar 

  23. Schwinger, J. (1963). Phys. Rev. 130, 1253.

    Google Scholar 

  24. Longhi, G., and Lusanna, L. (1986). Phys. Rev. D 34, 3707.

    Google Scholar 

  25. Dirac, P. A. M. (1951). Canad. J. Math. 3, 1.

    Google Scholar 

  26. Regge, T., and Teitelboim, C. (1974). Ann. Phys. (N.Y.) 88, 286.

    Google Scholar 

  27. Alba, D., Lusanna, L., and Pauri, M. (2002). J. Math. Phys. 43, 1677. (HEP-TH/0102087) and “Multipolar Expansions for the Relativistic N Body Problem in the Rest-Frame Instant Form (HEP-TH/0103092).

    Google Scholar 

  28. Lusanna, L., and Materassi, M. (1999). Int. J. Mod. Phys. A 15, 2821 (HEP-TH/9904202).

    Google Scholar 

  29. Hanson, A. J., and Regge, T. (1974). Ann. Phys. (N.Y.) 87, 498. Hanson, A. J., Regge, T., and Teitelboim, C. (1975) “Constrained Hamiltonian Systems,” in Contributi del Centro Linceo Interdisciplinare di Scienze Matematiche, Fisiche e loro Applicazioni, n.22 (Accademia Nazionale dei Lincei, Roma).

    Google Scholar 

  30. Longhi, G., and Materassi, M. (1999). J. Math. Phys. 40, 480 (HEP-TH/9803128); (1999). Int. J. Mod. Phys. A 14, 3397 (HEP-TH/9890024).

    Google Scholar 

  31. Beig, R., and Murchadha, Ó. (1987). Ann. Phys. (N.Y.) 174, 463.

    Google Scholar 

  32. Andersson, L. (1987). J. Geom. Phys. 4, 289.

    Google Scholar 

  33. Landau, L., and Lifschitz, E. (1951) “The Classical Theory of Fields” (Addison-Wesley, Cambridge).

    Google Scholar 

  34. De Witt, B. S. (1967). Phys. Rev. 160, 1113.

    Google Scholar 

  35. De Witt, B. S. (1967). Phys. Rev. 162, 1195; (1967). “The Dynamical Theory of Groups and Fields” (Gordon and Breach, New York) and in (1964). “Relativity, Groups and Topology,” Les Houches 1963, eds. DeWitt, C., and DeWitt, B. S. (Gordon and Breach, London); (1984). “The Spacetime Approach to Quantum Field Theory,” in “Relativity, Groups and Topology II,” Les Houches 1983, eds. DeWitt, B. S., and Stora, R. (North-Holland, Amsterdam). De Witt, B. S., and Brehme, R. W. (1960). Ann. Phys. (N.Y.) 9, 220.

    Google Scholar 

  36. Hawking, S. W., and Horowitz, G. T. (1996). Class. Quantum Grav. 13, 1487.

    Google Scholar 

  37. Brill, D. M., and Jang, P. S. (1980). “The Positive Mass Conjecture,” in “General Relativity and Gravitation,” Vol. 1, ed. Held, A. Plenum, New York.

  38. Stephani, H. (1996). “General Relativity” Cambridge Univ. Press, Cambridge.

    Google Scholar 

  39. Trautman, A. (1962). In: “Gravitation, an Introduction to Current Research,” ed. Witten, L. Wiley, New York.

  40. Solov'ev, V. O. (1985). Theor. Math. Phys. 65, 1240; (1988) Sov. J. Part. Nucl. 19, 482.

    Google Scholar 

  41. Bergmann, P. G. (1961). Rev. Mod. Phys. 33, 510.

    Google Scholar 

  42. Marolf, D. (1996). Class Quantum Grav., 13, 1871.

    Google Scholar 

  43. Barbour, J. (1995). “General Relativity as a Perfectly Machian Theory,” in “Mach's Principle: From Newton's Bucket to Quantum Gravity,” eds. Barbour, J. B., and Pfister, H., Einstein's Studies n.6 (Birkh äuser, Boston).

  44. Pauri, M., and Prosperi, M. (1975). J. Math. Phys. 16, 1503.

    Google Scholar 

  45. Choquet-Bruhat, Y., Fischer, A., and Marsden, J. E. (1979). “Maximal Hypersurfaces and Positivity of Mass,” LXVII E. Fermi Summer School of Physics “Isolated Gravitating Systems in General Relativity,” ed. Ehlers, J. (North-Holland, Amsterdam).

    Google Scholar 

  46. Soffel, M. H. (1989). “Relativity in Astrometry, Celestial Mechanics and Geodesy” (Springer, Berlin).

    Google Scholar 

  47. Abbati, M. C., Cirelli, R., Maniá, A., and Michor, P. (1989). J. Geom. Phys. 6, 215.

    Google Scholar 

  48. Schmidt, R. (1987). “Infinite Dimensional Hamiltonian Systems” (Bibliopolis, Napoli.) J. Milnor, (1984). In: “Relativity, Groups and Topology II,” Les Houches 1983, (De Witt, B. S., and Stora, R. Eds.), (Elsevier, Amsterdam).

    Google Scholar 

  49. Bao, D., Isenberg, J., and Yasskin, P. B. (1985). Ann. Phys. (N.Y.) 164, 103.

    Google Scholar 

  50. Helgason, S. (1962). “Differential Geometry and Symmetric Spaces” (Academic Press, New York).

    Google Scholar 

  51. Kobayashi, S., and Nomizu, K. (1963). “Foundations of Differential Geometry,” Vol. I (Interscience, New York, 1963).

    Google Scholar 

  52. Fischer, A. E. “The Theory of Superspace,” (1970). In: “Relativity,” eds. Carmeli, M., Fickler, L., and Witten, L. (Plenum, New York; (1983) Gen. Rel. Grav. 15, 1191; (1986) J. Math. Phys. 27, 718. Rainer, M. (1996). “The Moduli Space of Local Homogeneous 3-Geometries,” talk at the Pacific Conf. on Gravitation and Cosmology, Seoul.

    Google Scholar 

  53. Timothy Swift, S. (1992). J. Math. Phys. 33, 3723; (1993). 34, 3825 and 3841.

    Google Scholar 

  54. Arms, J. M., Marsden, J. E., and Moncrief, V. (1981). Commun. Math. Phys. 78, 455.

    Google Scholar 

  55. Moncrief, V. (1979). J. Math. Phys. 20, 579. Cantor, M. (1981). Bull. Am. Math. Soc. 5, 235.

    Google Scholar 

  56. Cendra, H., Ibort, A., and Marsden, J. (1987). J. Geom. Phys. 4, 183. Balachandran, A. P.,Marmo, G., Skagerstam, B. S., and Stern, A. (1991). “Classical Topology and Quantum States” (World Scientific, Singapore).

    Google Scholar 

  57. Giulini, D. (1995). Helv. Phys. Acta 68, 86.

    Google Scholar 

  58. Lee, J., and Wald, R. M. (1990). J. Math. Phys. 31, 725.

    Google Scholar 

  59. Antonsen, F., and Markopoulou, F. “4D Diffeomorphisms in Canonical Gravity and Abelian Deformations,” Imperial/TP/96-97/26 (GR-QC/9702046).

  60. Teitelboim, C. (1980). “The Hamiltonian Structure of Space-Time,” In: “General Relativity and Gravitation,” ed. Held, A. Vol.I (Plenum, New York).

    Google Scholar 

  61. Kuchar, K. (1993). “Canonical Quantum Gravity” In: “General Relativity and Gravitation” Int.Conf. GR13, Cordoba (Argentina) 1992, eds. Gleiser, R. J., Kozameh, C. N., and Moreschi, O. M. (IOP, Bristol).

    Google Scholar 

  62. Beig, R. (1994). “The Classical Theory of Canonical General Relativity,” in “Canonical Gravity: From Classical to Quantum,” Bad Honnef 1993, eds. Ehlers, J., and Friedrich, H. Lecture Notes Phys. 434 (Springer, Berlin).

    Google Scholar 

  63. Kuchar, K. (1971). Phys. Rev. D 4, 955; (1970). J. Math. Phys. 11, 3322; 13, 768 (1972).

    Google Scholar 

  64. Misner, C. W. (1969). Phys. Rev. Lett. 22, 1071; (1969). Phys. Rev. 186, 1319 and 1328.

    Google Scholar 

  65. York, jr., J. W. (1979). “Kinematics and Dynamics of General Relativity,” in “Sources of Gravitational Radiation,” Battelle-Seattle Workshop 1978, ed. Smarr, L. L. (Cambridge Univ. Press, Cambridge). Qadir, A., and Wheeler, J. A. (1985). “York's Cosmic Time Versus Proper Time,” in “From SU(3) to Gravity,” Y. Ne'eman's festschrift, eds. E. Gotsma and G. Tauber (Cambridge Univ. Press, Cambridge).

    Google Scholar 

  66. Isham, C. J. (1993). “Canonical Quantum Gravity and the Problem of Time,” in “Integrable Systems, Quantum Groups and Quantum Field Theories,” eds. Ibort, L. A. and Rodriguez, M. A. Salamanca 1993 (Kluwer, London); (1991). “Conceptual and Geometrical Problems in Quantum Gravity,” in “Recent Aspects of Quantum Fields,” Schladming 1991, eds. H.Mitter and H.Gausterer (Springer, Berlin); (1994). “Prima Facie Questions in Quantum Gravity” and “Canonical Quantum Gravity and the Question of Time,” in “Canonical Gravity: From Classical to Quantum,” eds. J.Ehlers and H.Friedrich (Springer, Berlin).

    Google Scholar 

  67. Kuchar, K. (1992). “Time and Interpretations of Quantum Gravity,” in Proc. 4th Canadian Conf. on “General Relativity and Relativistic Astrophysics,” eds. Kunstatter, G., Vincent, D., and Williams, J. (World Scientific, Singapore).

    Google Scholar 

  68. Kuchar, K. (1981). “Canonical Methods of Quantization,” in “Quantum Gravity 2,” eds. Isham, C. J., Penrose, R., and Sciama, D. W. (Clarendon Press, Oxford).

    Google Scholar 

  69. Baierlein, R. F., Sharp, D. H., and Wheeler, J. A. (1962). Phys. Rev. 126, 1864.

    Google Scholar 

  70. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation (Freeman, New York).

    Google Scholar 

  71. Parentani, R. (1997). “The Notions of Time and Evolution in Quantum Cosmology,” GR-QC/9710130.

  72. Kiefer, C., (1994). “The Semiclassical Approximation to Quantum Gravity” in “Canonical Gravity - from Classical to Quantum,” ed. Ehlers, J., (Springer, Berlin). (1994). “Semiclassical Gravity and the Problem of Time,” in Proc. Cornelius Lanczos Int.Centenary Conf., eds. Chu, M., Flemmons, R., Brown, D., and Ellison, D., (SIAM). (1996). Nucl. Phys. B 475, 339.

    Google Scholar 

  73. Bartnik, R., and Fodor, G., (1993). Phys. Rev. D 48, 3596.

    Google Scholar 

  74. Giulini, D., (1999). J. Math. Phys. 40, 2470.

    Google Scholar 

  75. Lusanna, L., (1981). Nuovo Cimento, B 65, 135.

    Google Scholar 

  76. Lichnerowicz, A. (1944). J. Math. Pure Appl. 23, 37. Faures-Bruhat, Y. (1948). C.R. Acad. Sci. Paris 226, 1071; (1956) J. Rat. Mech. Anal. 5, 951; (1962). “The Cauchy Problem” in “Gravitation: An Introduction to Current Research,” ed. Witten, L., (Wiley, New York).

    Google Scholar 

  77. York, jr, J.W. (1971). Phys. Rev. Lett. 26, 1656; 28, 1082 (1972). (1972) J. Math. Phys. 13, 125; 14, 456. (1974) Ann. Ins. H. Poincar´e XXI, 318. O'Murchadha, N., and York, jr, J. W. (1972). J. Math. Phys. 14, 1551 (1974). Phys. Rev. D 10, 428.

    Google Scholar 

  78. Choquet-Bruhat, Y., and York, jr., J. W. (1980). “The Cauchy Problem,” in “General Relativity and Gravitation,” vol.1, ed. Held, A. (Plenum, New York).

    Google Scholar 

  79. Ciufolini, I., and Wheeler, J. A. (1995). “Gravitation and Inertia” (Princeton University Press, Princeton).

    Google Scholar 

  80. Schoen, R., and Yau, S. T. (1979). Phys. Rev. Lett. 43, 1457; (1979). Commun. Math. Phys. 65, 45 and 79, 231 (1980).Witten, E., (1981). Commun. Math. Phys. 80, 381. Brill, D. M. and Jang, P. S. (1980). “The Positive Mass Conjecture,” in “General Relativity and Gravitation,” Vol. 1, ed. A. Held (Plenum, New York). Choquet-Bruhat, Y., (1984). “Positive Energy Theorems,” in “Relativity, Groups and Topology II,” Les Houches XL 1983, eds. DeWitt, B. S., and Stora, R., (North-Holland, Amsterdam). Horowitz, G. T. (1984). “The Positive Energy Theorem and its Extensions,” in “Asymptotic Behaviour of Mass and Spacetime Geometry,” ed. Flaherty, F. J., Lecture Notes Phys. 202 (Springer, Berlin). Perry, M. J. (1984). “The Positive Mass Theories and Black Holes,” in “Asymptotic Behaviour of Mass and Spacetime Geometry,” ed. Flaherty, F. J. Lecture Notes Phys. 202 (Springer, Berlin).

    Google Scholar 

  81. Isenberg, J., and Marsden, J. E. (1984). J. Geom. Phys. 1, 85.

    Google Scholar 

  82. Moncrief, V. (1965). J. Math. Phys. 16, 1556; Arms, J., Fischer, A., and Marsden, J. E., (1975). C.R. Acad. Sci. Paris A 281, 517; Arms, J., (1986). Acta Phys. Pol. B. 17, 499 and Contemp. Math. 81, 99 (1988). Arms, J. M., Gotay, M. J., and Jennings, G., (1990). Adv. Math. 79, 43.

    Google Scholar 

  83. Isenberg, J. (1987). Phys. Rev. Lett. 59, 2389.

    Google Scholar 

  84. Isenberg, J. (1995). Class. Quantum Grav. 12, 2249.

    Google Scholar 

  85. Isenberg, J., and Moncrief, V., (1996). Class. Quantum Grav. 13, 1819.

    Google Scholar 

  86. Bartnik, R., (1988). Commun. Math. Phys. 117, 615 Brill, D (1982). in Proc. Third Marcel Grossman Meeting, ed. Ning, H. (North-Holland, Amsterdam).

    Google Scholar 

  87. Dirac, P. A. M. (1949). Rev. Mod. Phys. 21, 392.

    Google Scholar 

  88. Gaida, R. P., Kluchkovsky, Yu. B. and Tretyak, V. I. (1983). Theor. Math. Phys. 55, 372; (1987). in “Constraint's Theory and Relativistic Dynamics,” eds. Longhi, G., and Lusanna, L. (World Scientific, Singapore, 1987).

    Google Scholar 

  89. Lusanna, L., (1990). (a) Phys. Rep. 185, 1 (b) (1991). Riv. Nuovo Cimento 14, n.3, 1. (c) (1990). J. Math. Phys. 31, 428 and 2126. (d) (1993). Int. J. Mod. Phys. A 8, 4193. (e) (1992). Contemp. Math. 132, 531.

    Google Scholar 

  90. Batalin, I. A., and Vilkoviski, G. A. (1984). Nucl. Phys. B 234, 106.

    Google Scholar 

  91. Synge, J. L. (1960). “Relativity: the General Theory” (North-Holland, Amsterdam, 1960).

    Google Scholar 

  92. Hwang, S., (1991). Nucl. Phys. B351, 425.

    Google Scholar 

  93. Dirac, P. A. M. (1962). in “Recent Developments in General Relativity,” Pergamon Press, Oxford, and PWN-Polish Scientific Publishers, Warsaw.

    Google Scholar 

  94. Isham, C. J. and Kuchar, K., (1984). Ann. Phys. (N.Y.) 164, 288 and 316. Kuchar, K., (1986). Found. Phys. 16, 193.

    Google Scholar 

  95. Cartan, E., (1951). “Lecons sur la Geometrie des Espaces de Riemann,” 2nd edn. (Gauthier-Villars, Paris).

    Google Scholar 

  96. Spivak, M., (1970). “Differential Geometry,” vol. 2 (Publish or Perish, Boston).

    Google Scholar 

  97. Chester, C. R. (1971). “Techniques in Partial Differential Equations” (McGraw-Hill Kogakusha, Tokyo).

    Google Scholar 

  98. Sugano, R., Kagraoka, Y., and Kimura, T., (1992). Int. J. Mod. Phys. A 7, 61.

    Google Scholar 

  99. Lifshitz, E. M., and Khalatnikov, I. M. (1963). Advan. Phys. 12, 185; Khalatnikov, I. M. and Lifshitz, E. M. (1970). Phys. Rev. Lett. 24, 76.

    Google Scholar 

  100. Bona, C., Massó, J., Seidel, E., and Walker, P., “Three Dimensional Numerical Relativity with a Hyperbolic Formulation,” GR-QC/9804052.

  101. Choquet-Bruhat, Y., Isenberg, J., and York, J. W. Jr., “Einstein Constraints on Asymptotically Euclidean Manifolds,” GR-QC/9906095. Anderson, A., Choquet-Bruhat, Y., and York, J., Jr., “Einstein's Equations and Equivalent Dynamical Systems,” GR-QC/9907099 and (1997). “Curvature-Based Hyperbolic Systems for General Relativity,” talk at the 8th M. Grossmann eeting (Jerusalem, Israel), GR-QC/9802027. Anderson, A., and York, J. W., Jr. (1999). Phys. Rev. Letters 81, 1154 and 4384. York, J. W., Jr. (1999). Phys. Rev. Letters 82, 1350.

  102. Bergmann, P. G., and Komar, A. B. (1960). Phys. Rev. Lett. 4, 432.

    Google Scholar 

  103. Stewart, J. (1993). “Advanced General Relativity,” (Cambridge Univ. Press, Cambridge).

    Google Scholar 

  104. d'Inverno, R. A., and Stachel, J. (1978). J. Math. Phys. 19, 2447; d'Inverno, R. (1997). “2+2 Formalism and Applications,” in “Relativistic Gravitation and Gravitational Radiation,” Les Houches 1995, eds. Marck, J. A., and Lasota, J. P. (Cambridge Univ. Press, Cambridge). d'Inverno, R., and Smallwood, J. (1980). Phys. Rev. D. 22, 1233; Smallwood, J. (1983). J. Math. Phys. 24, 599; Torre, C. G. (1986). Class. Quantum Grav. 3, 773; Hayward, S. A. (1993). Class. Quantum Grav. 10, 779.

    Google Scholar 

  105. Kuchar, K., (1972). J. Math. Phys. 13, 768.

    Google Scholar 

  106. Smolin, L., “The present moment in quantum cosmology: challenges to the arguments for the elimination of time,” (GR-QC/0104097).

  107. Witten, E. (1981). Commun. Math. Phys. 80, 381.

    Google Scholar 

  108. Sen, A. (1981). J. Math. Phys. 22, 1781; (1982). Phys. Lett. 119B, 89.

    Google Scholar 

  109. Sen, A. (1982). Int. J. Theor. Phys. 21, 1; Sommers, P. (1980). J. Math. Phys. 21, 2567.

    Google Scholar 

  110. Ashtekar, A., (1988). “New Perspectives in Canonical Gravity” (Bibliopolis, Napoli).

    Google Scholar 

  111. Penrose, R., and Rindler, W., (1986). “Spinors and Space-Time” vol.1 and 2. (Cambridge Univ. Press, Cambridge).

    Google Scholar 

  112. Choquet-Bruhat, Y., and Christodoulou, D., (1981). Acta Math. 146, 129; Reula, O., (1982). J. Math. Phys. 23, 810; Reula, O., and Todd, K., (1984). J. Math. Phys. 25, 1004; Parker, T., and Taub, C. H. (1982). Commun. Math. Phys. 84, 223; Parker, T. (1985). Commun. Math. Phys. 100, 471; Biz´on, P., and Malec, E., (1986). Class. Quantum Grav. 3, L123.

    Google Scholar 

  113. Frauendiener, J., (1991). Class. Quantum Grav. 8, 1881.

    Google Scholar 

  114. Frauendiener, J., (1989). Class. Quantum Grav. 6, L237.

    Google Scholar 

  115. Einstein, A. (1916). Sitzungsber Preuss. Akad. Wiss. Phys. Math. Kl. 42, 1111.

    Google Scholar 

  116. Møller, C., (1961). Ann. Phys. (N.Y.) 12, 118; in Proc. Int. School of Physics Fermi, E., (1962). Course XX (Academic Press, New York).

    Google Scholar 

  117. Pirani, F. A. E. (1962). “Gauss' Theorem and Gravitational Energy,” in “Les Theories Relativistes de la Gravitation,” Proc. Int. Conf. at Royaumont 1959, eds. Lichnerowicz, A., and Tonnelat, M. A. CNRS, Paris.

    Google Scholar 

  118. Goldberg, J. N. (1988). Phys. Rev. D 37, 2116.

    Google Scholar 

  119. Rosen, N. (1940). Phys. Rev. 57, 147; (1963) Ann. Phys. (N.Y.) 22, 1; Found. Phys. (1986) 15, 998); in “From SU(3) to Gravity,” Ne'eman's, Y., festschrift, eds. Gotsman, E., and Tauber, G., (Cambridge Univ. Press, Cambridge); (1986) in “Topological Properties and Global Structure of Space-Time,” eds. Bergmann, P. G., and de Sabbata, V. (Plenum, New York).

    Google Scholar 

  120. Petrov, A. Z. (1969). “Einstein Spaces” (Pergamon, Oxford.

    Google Scholar 

  121. Robinson, D. C. (1989). Class. Quantum Grav. 6, L121.

    Google Scholar 

  122. Bailey, I., and Israel, W. (1980). Ann. Phys. (N.Y.) 130, 188.

    Google Scholar 

  123. Dixon, W. G. (1967). J. Math. Phys. 8, 1591. (1979). “Extended Objects in General Relativity: their Description and Motion,” in “Isolated Gravitating Systems in General Relativity,” ed. J. Ehlers (North-Holland, Amsterdam).

    Google Scholar 

  124. Kovalevvsky, J., Mueller, I. I., and Kolaczek, B. (eds.) (1989). “Reference Frames in Astronomy and Geophysics” (Kluwer, Dordrecht).

    Google Scholar 

  125. Dixon, W. G. (1973). Gen. Rel. Grav. 4, 199.

    Google Scholar 

  126. DeWitt, B. S., and Brehme, R. W. (1960). Ann. Phys. (N.Y.) 9, 220.

    Google Scholar 

  127. Norton, J. D. (1989). “What was Einstein's Principle of Equivalence?,” in “Einstein and the History of General Relativity: Einstein Studies,” Vol. 1, eds. Howard, D., and Stachel, J. (Birkhäuser, Boston). (1993) Rep. Prog. Phys. 56, 791 (1993).

  128. Abramowicz, M. A. (1993). “Inertial Forces in General Relativity,” in “The Renaissance of General Relativity and Cosmology,” eds. G. Ellis, A. Lanza and J. Miller (Cambridge Univ. Press, Cambridge, 1993). Sonego, S., and Massar,M. (1996). Class. Quantum Grav. 13, 139. De Felice, F. (1991). Mon. Not. R. Astron. Soc. 252, 197.

    Google Scholar 

  129. Pauri, M., and Vallisneri, M. (1999). “Classical Roots of the Unruh and Hawking Effects,” Found. Phys. 29, 1499 (GR-QC/9903052).

    Google Scholar 

  130. Lusanna, L., and Nowak-Szczepaniak, D. (2000). Int. J. Mod. Phys. A 15, 4943 (HEP-TH/0003095).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Pietri, R., Lusanna, L., Martucci, L. et al. Review: Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge. General Relativity and Gravitation 34, 877–1033 (2002). https://doi.org/10.1023/A:1016369931750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016369931750

Navigation