Skip to main content
Log in

Deep-water Oculina coral reefs of Florida: biology, impacts, and management

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Deep-water Oculina coral reefs, which are similar in structure and development to deep-water Lophelia reefs, stretch over 167 km (90 nmi) at depths of 70–100 m along the eastern Florida shelf of the United States. These consist of numerous pinnacles and ridges, 3–35 m in height. Coral growth rates average 16.1 mm yr−1 and biodiversity is very rich. Extensive areas of Oculina rubble may be due to human impacts (e.g. fish trawling and dredging, anchoring, bottom longlines) and natural processes such as bioerosion and episodic die-off. Early in the 1970s, the reefs were teeming with fish. By the early 1990s, both commercial and recreational fisheries, including scallop, shrimp, grouper, snapper and amberjack, had taken a toll on the reefs and especially on populations of grouper and snapper. A 315 km2 (92 nmi2) area was designated the Oculina Habitat of Particular Concern (HAPC) in 1984, prohibiting trawling, dredging, bottom longlines and anchoring, and legislation was enacted in 2000 for expansion of the Oculina HAPC to 1029 km2 (300 nmi2). The United States Coast Guard has been charged with surveillance and enforcement of the ban on bottom fishing and trawling. The primary difficulties in protecting these reefs and other deep-water Marine Protected Areas are their remoteness and time required to engage an enforcement vessel. Education regarding the nature and importance of these rich resources is important for better self regulation and surveillance by the fishing community. Only by bringing deep-water reefs to the public, the fishing community, and enforcement agencies, through video, photos, and education will there be better understanding and acceptance for the need of protection for these unseen resources. This paper reviews the current knowledge on the deep-water Oculina reefs, including the biology, geology, human impacts, and history of conservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avent, R. M., M. E. King & R. H Gore, 1977. Topographic and faunal studies of shelf-edge prominences off the central eastern Florida coast. Int. Rev. ges. Hydrobiol. 62: 185–208.

    Google Scholar 

  • Bak, R. P., 1978. Lethal and sublethal effects of dredging on reef corals. Mar. Poll. Bull. 9: 14–16.

    Google Scholar 

  • Brooke, S. D., 1998. Reproduction and larval biology of the ivory tree coral Oculina varicose. Am. Zool. 38: 100a.

    Google Scholar 

  • Child, C. A., 1998. Nymphon torulum, new species and other Pycnogonida associated with the coral Oculina varicosa on the east coast of Florida. Bull. mar. Sci. 63: 595–604.

    Google Scholar 

  • Cremer, P., 1986. U-boat Commander. Berkley Books, New York: 244 pp.

    Google Scholar 

  • Dodge, R. E., R. C. Aller & J. Thompson, 1974. Coral growth related to resuspension of bottom sediments. Nature 247: 574–577.

    Google Scholar 

  • Emery, K. O. & E. Uchupi, 1972. Western North Atlantic Ocean: topography, rocks, structure, water, life, and sediments. Mem. 17, Am. Ass. petrol. Geol.: 532 pp.

  • Fosså, J. H., P. B. Mortensen & D. M. Furevik, 2000a. The deep water coral Lophelia pertusa in Norwegian waters; distribution and fishery impacts. First Internat. Symp. Deep Sea Corals: 25.

  • Fosså, J. H., P. B. Mortensen & D. M Furevik, 2000b. Lophelia-korallrev langs Nordskekysten forekomst og tilstand. Institute of Marine Research, Bergen, Fisken og Havet Nr. 2: 94 pp.

  • Freiwald, A. & J. Schönfeld, 1996. Substrate pitting and boring pattern of Hyrrokkin sarcophaga Cedhagen, 1994 (Foraminifera) in a modern deep-water coral reef mound. Mar. Micropaleon. 28: 199–207.

    Google Scholar 

  • Freiwald, A., R. Henrich & J. Pätzold, 1997. Anatomy of a deep-water coral reef mound from Stjernsund, west Finnmark, northern Norway. Soc. sedim. Geol., SEPM spec. Pub. 56: 141–162.

    Google Scholar 

  • Freiwald, A., J. B Wilson & R. Henrich, 1999. Grounding Pleistocene icebergs shape recent deep-water coral reefs. Sedim. Geol. 125: 1–8.

    Google Scholar 

  • Gilmore, R. G. & R. S. Jones, 1992. Color variation and associated behavior in the epinepheline groupers, Mycteroperca microlepis (Goode and Bean) and M. phenax Jordan and Swain. Bull. mar. Sci. 51: 83–103.

    Google Scholar 

  • Glynn, P. W., 1996. Bioerosion and coral reef growth: A dynamic balance. In Birkland, C. (ed.), Life and Death of Coral Reefs. Chapman & Hall New York: 68–95.

    Google Scholar 

  • Hoskin, C. M., J. C. Geier & J. K. Reed, 1983. Sediment produced from abrasion of the branching stony coral Oculina varicose. J. Sedim. Petrol. 53: 779–786.

    Google Scholar 

  • Hoskin, C. M., J. K. Reed & D. H. Mook, 1987. Sediments from a living shelf-edge reef and adjacent area off central eastern Florida. In Maurrasse, F. J. M. (ed.), Proc. Symp. South Florida Geol., Miami geol. Soc. Mem. 3: 42–57.

  • Hubbard, J. A. & Y. P. Pocock, 1972. Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geol. Rund. 61: 598–626.

    Google Scholar 

  • Jensen, A. & R. Frederiksen, 1992. The fauna associated with the bank-forming deepwater coral Lophelia pertusa (scleractinia) on the Faroe shelf. Sarsia 77: 53–69.

    Google Scholar 

  • Jones, J. B., 1992. Environmenal impact of trawling on the seabed: a review. New Zeal. J. mar. Freshwat. Res. 26: 59–67.

    Google Scholar 

  • Koenig, C. C., F. C. Coleman, C. B. Grimes, G. R. Fitzhugh, K. M. Scanlon, C. T. Gledhill & M. Grace, 2000. Protection of fish spawning habitat for the conservation of warm-temperate reef-fish fisheries of shelf-edge reefs of Florida. Bull. mar. Sci. 66: 593–616.

    Google Scholar 

  • Koslow, J. A., G. W. Boehlert, J. D. Gordon, R. L. Haedrich, P. Lorance & N. Parin, 2000. Continetal slope and deep-sea fisheries: implications for a fragile ecosystem. ICES J. mar. Sci. 57: 548–557.

    Google Scholar 

  • Krutschinna, J. & A. Freiwald, 1998. Microendolithic succession along live to dead Lophelia pertusa (L.) skeletons from an aphotic coral reef. Proc. 2nd Internat. Bioerosion Workshop: 43 pp.

  • Ludwick, J. C. & W. R. Walton, 1957. Shelf-edge, calcareous prominences in northeastern Gulf of Mexico. Bull. am. Ass. petrol. Geol. 41: 2054–2101.

    Google Scholar 

  • Macintyre, I. G. & J. D. Milliman, 1970. Physiographic features on the outer shelf and upper continental slope, Atlantic continental margin, southeastern United States. Bull. am. geol. Soc. 81: 2577–2598.

    Google Scholar 

  • Miller, J. E. & D. L. Pawson, 1979. A new subspecies of Holothuria lentigenosa Marenzeller from the western Atlantic Ocean. Proc. biol. Soc. Wash. 91: 912–922.

    Google Scholar 

  • Milliman, J. D., F. T. Manheim, R. M. Pratt & E. F. Zarudzki, 1967. ALVIN dives on the continental margin off the southeastern United States, July 2–13, 1967. Tech. Rep., Woods Hole Oceanographic Institution 67-80: 1–48.

    Google Scholar 

  • Moore, D. R. & H. R. Bullis, Jr., 1960. A deep-water coral reef in the Gulf of Mexico. Bull. mar. Sci. Gulf Carib. 10: 125–128.

    Google Scholar 

  • Mortensen, P. B. & H. T. Rapp, 1998. Oxygen and carbon isotope ratios related to growth line patterns in skeletons of Lophelia pertusa (L.) (Anthozoa, Scleractinia): implications for determination of linear extension rates. Sarsia 83: 433–446.

    Google Scholar 

  • Mortensen, P. B., M. Hovland, T. Brattegard & R. Farestveit, 1995. Deep-water bioherms of the scleractinian coral Lophelia pertusa (L.) at 64° N on the Norwegian shelf: structure and associated megafauna. Sarsia 80: 145–158.

    Google Scholar 

  • National Oceanic and Atmospheric Administration, 1982. Fishery Management Plan for Coral and Coral Reefs of the Gulf of Mexico and South Atlantic. Gulf of Mexico and South Atlantic Fishery Management Councils, Tampa, Florida: 342 pp.

  • National Oceanic and Atmospheric Administration, 1998. Oculina bank HAPC expanded northward. South Atlantic Update, The South Atlantic Fishery Management Council, Charleston, South Carolina: 18 pp.

  • Neumann, A. C. & M. M. Ball, 1970. Submersible observations in the Straits of Florida: geology and bottom currents. Geol. Soc. am. Bull. 81: 2861–2874.

    Google Scholar 

  • Newton, C. R., H. T. Mullins, A. F. Gardulski, A. C. Hine & G. R. Dix, 1987. Coral mounds on the west Florida slope: unanswered questions regarding the development of deep-water banks. Palaios 2: 359–367.

    Google Scholar 

  • Reed, J. K., 1980. Distribution and structure of deep-water Oculina varicosa coral reefs off central eastern Florida. Bull. mar. Sci. 30: 667–677.

    Google Scholar 

  • Reed, J. K., 1981. In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. Proc. 4th Internat. Coral Reef Symp. 2: 201–206.

    Google Scholar 

  • Reed, J. K., 1983. Nearshore and shelf-edge Oculina coral reefs: the effects of upwelling on coral growth and on the associated faunal communities. National Oceanic Atmospheric Administration, Symp. Ser. Undersea Res. 1: 119–124.

    Google Scholar 

  • Reed, J. K., 1985. Shelf edge Oculina reefs. In Seaman, W., Jr. (ed.), Florida Aquatic Habitat and Fishery Resources. Florida Chapter of American Fisheries Society, Kissimmee, Florida: 466–468.

    Google Scholar 

  • Reed, J. K., 1998. Bioerosion and sediment production on Florida's deep-water Oculina coral banks. Proc. 2nd Internat. Bioerosion Workshop: 54–56.

  • Reed, J. K. & R. G. Gilmore, 1981. Inshore occurrence and nuptial behavior of the roughtail stingray, Dasyatis centroura (Dasyatidae), on the continental shelf, east central Florida. Northeast Gulf Sci. 5: 1–4.

    Google Scholar 

  • Reed, J. K. & C. M. Hoskin, 1987. Biological and geological processes at the shelf edge investigated with submersibles. National Oceanic Atmospheric Administration, Symp. Ser. Undersea Res. 2: 191–199.

    Google Scholar 

  • Reed, J. K. & P. M. Mikkelsen, 1987. The molluscan community associated with the scleractinian coral Oculina varicose. Bull. mar. Sci 40: 99–131.

    Google Scholar 

  • Reed, J. K., R. H. Gore, L. E. Scotto & K. A. Wilson, 1982. Community composition, structure, areal and trophic relationships of decapods associated with shallow-and deep-water Oculina varicosa coral reefs. Bull. mar. Sci. 32: 761–786.

    Google Scholar 

  • Richer de Forges, B.,J. A Koslow & G. C. Poore, 2000. Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405: 944–947.

    Google Scholar 

  • Richman, S., Y. Loya & L. Slobodkin, 1975. The rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol. Oceanogr. 20: 918–923.

    Google Scholar 

  • Rogers, A. D., 1999. The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. Int. Rev. Hydrobiol. 84: 315–406.

    Google Scholar 

  • Rogers, C. S., 1990.Responses of coral reefs and reef organisms to sedimentation. Mar. Ecol. Prog. Ser. 62: 185–202.

    Google Scholar 

  • Schmuck, E. A., P. C. Valentine & N. W. Driscoll, 1995. Examples of trawl and dredge marks from side-scan sonar records collected from Stellwagen Bank, Georges Bank, and Block Island Sound, and their geomorphic and sedimentary significance. N.E. Section geol. Soc. Am. 1995, abstract.

  • Smith, F. G. W., 1971. Atlantic Reef Corals. Univ. Miami Press, Coral Gables, Florida: 164 pp.

    Google Scholar 

  • Smith, N. P., 1981. An investigation of seasonal upwelling along the Atlantic coast of Florida. Proc. 12th Internat. Liege Colloque Ocean Hydrodynamics: 79–98.

  • Stetson, T. R., D. F. Squires & R. M. Pratt, 1962. Coral banks occurring in deep water on the Blake Plateau. Am. Mus. Nov. 2114: 1–39.

    Google Scholar 

  • Teichert, C., 1958, Cold-and deep-water coral banks. Bull. am. Ass. petrol. Geol. 42: 1064–1082.

    Google Scholar 

  • Thompson, M. J. & L. E. Gulliland, 1980. Topographic mapping of shelf edge prominences off southeastern Florida. Southeastern Geol. 21: 155–164.

    Google Scholar 

  • Van Dolah, R. F., P. H. Wendt & N. Nicholson, 1987. Effects of a research trawl on a hard-bottom assemblage of sponges and corals. Fisheries Res. 5: 39–64.

    Google Scholar 

  • Verrill, A. E., 1902. Papers on corals. Trans. Conn. Acad. Arts Sci. 11: 63–266.

    Google Scholar 

  • Virden, W. T., T. L. Berggren, T. A. Niichel & T. L. Holcombe, 1996. Bathymetry of the shelf-edge banks, Florida east coast. National Oceanic and Atmospheric Administration, National Geophysical Data Center, National Marine Fisheries Service, Beaufort, North Carolina: 1.

    Google Scholar 

  • Wilson, J. B., 1979. The distribution of the coral Lophelia pertusa (L) [L. prolifera (Pallas)] in the northeast Atlantic. J. mar. biol. Ass. U.K. 59: 149–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, J.K. Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471, 43–55 (2002). https://doi.org/10.1023/A:1016588901551

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016588901551

Navigation