Skip to main content
Log in

Multi-Tier Cellular Network Dimensioning

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless communications systems enable the end users to be mobile. The majority of the wireless communications networks are cellular networks. Several methods are developed to increase the performance of the cellular networks, which depends on the correct determination of the design parameters as well as the architecture of the system and the traffic requirements. In this study, we introduce a Simulated Annealing (SA) based method to determine the design parameters of a multi-tier cellular network, for which the implementation cost is minimized. The cellular system employs guard channels and allows calls to overflow to upper tiers. We conducted experiments with the SA-based technique on different example problems in two-tier cellular networks and obtained promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Katz, Adaptation and mobility in wireless information systems, IEEE Personal Communications Magazine 1(1) (1994) 6-17.

    Google Scholar 

  2. M. Shafi, A. Hashimoto, M. Umehira, S. Ogose and T. Murase, Wireless communications in the twenty-first century: A perspective, Proceedings of the IEEE 85(10) (October 1997) 1622-1639.

    Google Scholar 

  3. T.S. Rappaport, Wireless Communications (Prentice-Hall, Englewood Cliffs, NJ, 1996).

    Google Scholar 

  4. M.F. Catedra and J.P.-Arriaga, Cell Planning for Wireless Communications (Artech House, 1999).

  5. N. Passas, S. Paskalis, D. Vali and L. Merakos, Quality-of-Service-oriented medium access control for wireless ATM networks IEEE Communications Magazine (November 1997) 42-50.

  6. M. Naghshineh and M. Willebeck-LeMair, End-to-end QoS provisioning in multimedia wireless/mobile networks using an adaptive framework, IEEE Communications Magazine (November 1997) 72-81.

  7. L. Hu and S.S. Rappaport, Personal communication systems using multiple hierarchical cellular overlays, IEEE Journal on Selected Areas in Communications 13(2) (February 1995) 406-415.

    Google Scholar 

  8. R. Coombs and R. Steele, Introducing microcells into macrocellular networks: A case study, IEEE Transactions on Communications 47(4) (April 1999) 568-576.

    Google Scholar 

  9. K. Buchanan, R. Fudge, D. McFarlane, T. Phillips, A. Sasaki and H. Xia, IMT 2000: Service provider's perpective, IEEE Personal Communications 4 (August 1997) 8-13.

  10. I.F. Akyildiz, J. McNair, J.S.M. Ho, H. Uzunalioglu and W. Wang, Mobility management in next-generation wireless systems, Proceedings of IEEE 87 (August 1999) 1347-1384.

  11. W. Wang and I.F. Akyildiz, Intersystem location update and paging schemes in multitier wireless networks, in: Proceedings of IEEE MobiCom 2000 (August 2000) pp. 99-109.

  12. Ş. Tekinay and B. Jabbari, A measurement-based prioritization scheme for handovers in mobile cellular networks, IEEE Journal on Selected Areas in Communications 10(8) (October 1992) 1343-1350.

    Google Scholar 

  13. M. Sidi and D. Starobinski, New call blocking versus handoff blocking in cellular networks, in: Proceedings of the Conference on Computer Communications (IEEE INFOCOM '96) (1996).

  14. L. Ortigoza-Guerrero and A.H. Aghvami, Resource Allocation in Hierarchical cellular Systems (Artech House, Boston/London, 2000).

    Google Scholar 

  15. S. Oh and D. Tcha, Prioritized channel assignment in a cellular radio network, IEEE Transactions on Communications 40(7) (July 1992) 1259-1269.

    Google Scholar 

  16. M. Oliver and J. Borras, Performance evaluation of variable reservation policies for hand-off prioritization in mobile networks, in: Proceedings of IEEE INFOCOM '99, Vol. 3 (1999) pp. 1187-1194.

    Google Scholar 

  17. S. Choi and K. Sohraby, Analysis of a mobile cellular system with hand-off priority and hysteresis control, in: Proceedings of IEEE INFOCOM 2000, Vol. 1 (March 2000) pp. 217-224.

  18. Y. Ma, J.J. Han and K.S. Trivedi, Call admission control for reducing dropped calls in code division multiple access (CDMA) cellular systems, in: Proceedings of IEEE INFOCOM 2000, Vol. 3 (March 2000) pp. 1481-1490.

  19. T.-S.P. Yum and W.-S. Wong, Hot-spot traffic relief in cellular systems, IEEE Journal on Selected Areas on Communications 11(6) (August 1993) 934-939.

    Google Scholar 

  20. I. Katzela and M. Naghshineh, Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey, IEEE Personal Communications (June 1996) 10-31.

  21. J. Li, N.B. Shroff and E.K.P. Chong, The study of a channel sharing scheme in wireless cellular networks including handoffs, in: Proceedings of IEEE INFOCOM '99, Vol. 3 (1999) pp. 1179-1186.

    Google Scholar 

  22. A. Ganz, C.M. Krishna, D. Tang and Z.J. Haas, On optimal design of multitier wireless cellular systems, IEEE Communications Magazine 35(2) (February 1997) 88-93.

    Google Scholar 

  23. S. Faruque, Science, engineering and art of cellular network deployment, in: Proceedings of the IEEE Conference on Personal, Indoor, Mobile, Radio Communications (PIMRC'98), Boston (September 1998).

  24. S.P. Brooks and B.J.T. Morgan, Optimization using simulated annealing, The Statistician 44 (1995) 241-257.

    Google Scholar 

  25. L. Ortigoza-Guerrero and A.H. Aghvami, On optimal spectrum partitioning in amicrocell/macrocell layout with overflow, in: Proceedings of the IEEE Global Telecommunications Conference (IEEE GLOBECOM '97), Arizona (1997).

  26. D. Bertsekas and R. Gallager, Data Networks, 2nd ed. (Prentice-Hall, Englewood Cliffs, NJ, 1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekici, E., Ersoy, C. Multi-Tier Cellular Network Dimensioning. Wireless Networks 7, 401–411 (2001). https://doi.org/10.1023/A:1016688029694

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016688029694

Navigation