Skip to main content
Log in

Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Binary Cu/ZnO catalysts with varying molar ratios (90/10 through 10/90) were studied under methanol synthesis conditions at 493 K and at atmospheric pressure. The methanol synthesis activity of the catalysts was correlated to their specific Cu surface area (N2O reactive frontal chromatography, N2O RFC) after reduction in 2 vol% H2 at 513 K. Activity data were supplemented with a detailed analysis of the microstructure, i.e., crystallite size and strain of the reduced Cu and the ZnO phases after reduction using X-ray diffraction line profile analysis. The estimated copper surface area based on a spherical shape of the copper crystallites is in good agreement with data determined by N2O RFC. A positive correlation of the turnover frequency for methanol production with the observed microstrain of copper in the Cu/ZnO system was found. The results indicate a mutual structural interaction of both components (copper and zinc oxide) in the sense that strained copper particles are stabilized by the unstrained state of the zinc oxide microcrystallites. The observed structural deformation of ZnO in samples with higher Cu loading can originate, for instance, from epitaxial bonding of the oxide lattice to the copper metal, insufficient reduction or residual carbonate due to incomplete thermal decomposition during reduction. Additional EXAFS measurements at the Cu K and the Zn K edge show that about 5% ZnO are dissolved in the CuO matrix of the calcined precursors. Furthermore, it is shown that the microstructural changes (e.g., size and strain) of copper can be traced back to the phase composition of the corresponding hydroxycarbonate precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Klier, Adv. Catal. 31 (1982) 243.

    Google Scholar 

  2. B.S. Rasmussen,P.E.H. Nielsen,J. Villadsen andJ.B. Hansen, in: Preparation of Catalysts IV, eds. B. Delmon,P. Grange,P.A. Jacobs andG. Poncelet (Elsevier, Amsterdam, 1987) p. 785.

    Google Scholar 

  3. K. Klier, Appl. Surf. Sci. 19 (1984) 267.

    Google Scholar 

  4. J. Nakamura,I. Nakamura,T. Uchijima,T. Wantanabe andT. Fujitani, Stud. Surf. Sci. Catal. 101 (1996) 1389.

    Google Scholar 

  5. G.C. Chinchen andK.C. Waugh, Appl. Catal. 25 (1986) 101.

    Google Scholar 

  6. R. Burch,S.E. Golunski andM.S. Spencer, J. Chem. Soc. Faraday Trans. 86 (1990) 2683.

    Google Scholar 

  7. M.S. Spencer, Topics Catal. 8 (1999) 259.

    Google Scholar 

  8. N.-Y. Topsøe andH. Topsøe, Topics Catal. 8 (1999) 267.

    Google Scholar 

  9. C.V. Ovesen,B.S. Clausen,J. Schiøtz,P. Stoltze,H. Topsøe andJ.K. Nørskov, J. Catal. 168 (1997) 133.

    Google Scholar 

  10. B.S. Clausen,J. Schiøtz,L. Gråbæk,C.V. Ovesen,K.W. Jacobsen,J.K. Nørskov andH. Topsøe, Topics Catal. 1 (1994) 367.

    Google Scholar 

  11. N.-Y. Topsøe andH. Topsøe, J. Mol. Catal. A 141 (1999) 95.

    Google Scholar 

  12. R.A. Hadden,P.J. Lambert andC. Ranson, Appl. Catal. 122 (1995) L1.

    Google Scholar 

  13. J.-L. Li andT. Inui, Appl. Catal. A 137 (1996) 105.

    Google Scholar 

  14. J.W. Couves,J.M. Thomas,D. Waller,R.H. Jones,A.J. Dent,G.E. Derbshire andG.N. Greaves, Nature 354 (1991) 465.

    Google Scholar 

  15. B. Bems, M.M. Günter, D. Herein, M. Schur and R. Schlögl, in preparation.

  16. O. Hinrichsen,T. Genger andM. Muhler, Chem.-Ing.-Tech. 72 (2000) 94.

    Google Scholar 

  17. G.C. Chinchen,C.M. Hay,H.D. Vanderwell andK.C. Waugh, J. Catal. 103 (1987) 79.

    Google Scholar 

  18. J.R. Anderson andK.C. Pratt, Introduction to Characterization and Testing of Catalysts (Academic Press, New York, 1985).

    Google Scholar 

  19. J.I. Langford, J. Appl. Crystallogr. 11 (1978) 10.

    Google Scholar 

  20. M.M. Günter, T. Ressler, B. Bems and R. Schlögl, in preparation.

  21. G.K. Williamson andW.H. Hall, Acta Metall. Mater. 1 (1953) 22.

    Google Scholar 

  22. D.R. Lide andH.P.R. Frederikse, eds., The CRC Handbook of Chemistry and Physics: a Ready-Reference Book of Chemical and Physical Data, 80th Ed. (CRC, Boca Raton, FL, 1999).

    Google Scholar 

  23. H.E. Swanson andE. Tatge, Natl. Bur. Stand. (US) Circ. 539, I (1953) 15.

    Google Scholar 

  24. R.W. Joyner, Catal. Lett. 6 (1990) 151; R. Burch, S.E. Golunski and M.S. Spencer, Catal. Lett. 6 (1990) 155, and references therein.

    Google Scholar 

  25. E. Kampshoff,E. Hahn andK. Kern, Phys. Rev. Lett. 73 (1994) 704.

    Google Scholar 

  26. M. Mavrikis,B. Hammer andJ.K. Nørskov, Phys. Rev. Lett. 81 (1998) 2819.

    Google Scholar 

  27. T. Fujitani andJ. Nakamura, Catal. Lett. 56 (1998) 119.

    Google Scholar 

  28. S.S. Rao andT.R. Anantharaman, Curr. Sci. 32 (1963) 262.

    Google Scholar 

  29. C. Delorme, Bull. Soc. Franc. Mineral. 81 (1958) 19.

    Google Scholar 

  30. A.C. Roberts, Powder Diffraction 1 (1986) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günter, M., Ressler, T., Bems, B. et al. Implication of the microstructure of binary Cu/ZnO catalysts for their catalytic activity in methanol synthesis. Catalysis Letters 71, 37–44 (2001). https://doi.org/10.1023/A:1016696022840

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016696022840

Navigation