Skip to main content
Log in

A Study of the Linear Tension Effect on the Polystyrene Microsphere Wettability with Water

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A technique aimed at measuring contact angles for microparticles and suitable for determining the linear tension is developed. The technique is based on determining the “equilibrium” position of the microsphere (where the sum of forces acting on the microsphere is zero) at the liquid–gas interface. This position is unambiguously determined from the experimental force–distance curve obtained for the microparticle–interface interaction. The measurements are performed using an original setup based on the operating principle of the atomic force microscope. The advancing and receding contact angles of water are measured for individual polystyrene microspheres with radii from 1 to 5 μm. The contact angles are shown to increase with a decreasing microsphere radius, whereas the hysteresis of the contact angle decreases. The results indicate the existence of a negative linear tension in the case of the rough surface of polystyrene microspheres, which is deformed along the three-phase contact line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Binnig, G., Quate, C.F., and Gerber, C., Phys. Rev. Lett., 1986, vol. 56, p. 930.

    Google Scholar 

  2. Ducker, W.A., Senden, T.J., and Pashley, R.M., Nature, 1991, vol. 353, p. 239.

    Google Scholar 

  3. Butt, H.-J., Biophys. J., 1991, vol. 60, p. 1438.

  4. Preuss, M. and Butt, H.-J., J. Colloid Interface Sci., 1998, vol. 208, p. 468.

    Google Scholar 

  5. Yakubov, G.E., Vinogradova, O.I., and Butt, H.-J., J. Adhes. Sci. Technol., 2000, vol. 14, no. 14, p. 1783.

    Google Scholar 

  6. Yoon, R.H. and Yordan, J.L., J. Colloid Interface Sci., 1986, vol. 113, p. 430.

    Google Scholar 

  7. Kelsall, G.H., Tang, S., Yurdakul, S., and Smith, A.L., J. Chem. Soc., Faraday Trans., 1996, vol. 92, p. 3887.

    Google Scholar 

  8. Vinogradova, O.I., Bunkin, N.F., Churaev, N.V., et al., J. Colloid Interface Sci., 1995, vol. 173, p. 443.

    Google Scholar 

  9. Yakubov, G.E., Butt, H.-J., and Vinogradova, O.I., J. Phys. Chem. B, 2000, vol. 104, p. 3407.

    Google Scholar 

  10. Cleveland, J.P., Manne, S., Bocek, D., and Hansma, P.K., Rev. Sci. Instrum., 1993, vol. 64, p. 403.

    Google Scholar 

  11. Preuss, M. and Butt, H.-J., Langmuir, 1998, vol. 14, p. 3164.

    Google Scholar 

  12. Harkins, W.D., J. Chem. Phys., 1937, vol. 5, p. 135.

    Google Scholar 

  13. de Feijter, J.A. and Vrij, A., J. Electroanal. Chem., 1972, vol. 37, p. 9.

    Google Scholar 

  14. Marmur, A., J. Colloid Interface Sci., 1997, vol. 186, p. 462.

    Google Scholar 

  15. Li, D., Lin, F.Y.H., and Neumann, A.W., J. Colloid Interface Sci., 1991, vol. 142, p. 224.

    Google Scholar 

  16. Rusanov, A.I., Kolloidn. Zh., 1977, vol. 39, p. 704.

    Google Scholar 

  17. Churaev, N.V., Starov, V. M., and Derjaguin, B.V., J. Colloid Interface Sci., 1982, vol. 89, p. 16.

    Google Scholar 

  18. Starov, V.M. and Churaev, N.V., Kolloidn. Zh., 1980, vol. 42, no. 4, p. 703.

    Google Scholar 

  19. Polymer Handbook, New York: Wiley, 1989.

  20. Nguyen, A.V., Stechemesser, H., Zobel, G., and Schultze, H.J., J. Colloid Interface Sci., 1997, vol. 1937, p. 547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakubov, G.E., Vinogradova, O.I. & Butt, HJ. A Study of the Linear Tension Effect on the Polystyrene Microsphere Wettability with Water. Colloid Journal 63, 518–525 (2001). https://doi.org/10.1023/A:1016726526647

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016726526647

Keywords

Navigation