Skip to main content
Log in

Development and operation of a 150 W air-feed direct methanol fuel cell stack

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A five-cell 150 W air-feed direct methanol fuel cell (DMFC) stack was demonstrated. The DMFC cells employed Nafion 117® as a solid polymer electrolyte membrane and high surface area carbon supported Pt-Ru and Pt catalysts for methanol electrooxidation and oxygen reduction, respectively. Stainless steel-based stack housing and bipolar plates were utilized. Electrodes with a 225 cm2 geometrical area were manufactured by a doctor-blade technique. An average power density of about 140 mW cm−2 was obtained at 110 °C in the presence of 1 M methanol and 3 atm air feed. A small area graphite single cell (5 cm2) based on the same membrane electrode assembly (MEA) gave a power density of 180 mW cm−2 under similar operating conditions. This difference is ascribed to the larger internal resistance of the stack and to non-homogeneous reactant distribution. A small loss of performance was observed at high current densities after one month of discontinuous stack operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kordesch and G. Simader, ‘Fuel Cells and their Applications’ (VCH, Weinheim, 1996).

    Google Scholar 

  2. A. Hamnett, Phil. Trans. R. Soc. Lond. A354 (1996) 1653.

    Google Scholar 

  3. M.P. Hogarth and G.A. Hards, Platinum Metal Rev. 40 (1996) 150.

    Google Scholar 

  4. C. Lamy and J-M. Léger, in O. Savadogo and P.R. Roberge (Eds), Proc. 2nd International Symp. on ‘New Materials for Fuel Cells and Modern Battery Systems’, Montréal, Canada (1997), pp. 477–487.

  5. A.K. Shukla, P.A. Christensen, A. Hamnett and M.P. Hogarth, J. Power Sources 55 (1995) 87.

    Google Scholar 

  6. L. Liu, C. Pu, R. Viswanathan, Q. Fan, R. Liu and E.S. Smotkin, Electrochim. Acta 43 (1998) 3657.

    Google Scholar 

  7. X. Ren, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12.

    Google Scholar 

  8. A.S. Aricò, P. Creti, P.L. Antonucci and V. Antonucci, Electrochem. Solid State Lett. 1 (1998) 4.

    Google Scholar 

  9. S.R. Narayanan, W.Chun, T.I. Valdez, B. Jeffries-Nakamura, H. Frank, S. Surampudi, G. Halpert, J. Kosek, C. Cropley, A.B. LaConti, M. Smart, Q. Wang, G. Surya Prakash and G.A. Olah, Program and Abstracts, Fuel Cell Seminar (1996), pp. 525–8.

  10. M. Baldauf and W. Preidel, J. Power Sources 84 (1999) 161.

    Google Scholar 

  11. S. Wasmus and A. Kuver, J. Electroanal. Chem. 461 (1999) 14.

    Google Scholar 

  12. A.S. Aricò, A.K. Shukla, K.M. el-Khatib, P. Cretì and V. Antonucci, J. Appl. Electrochem. 29 (1999) 671.

    Google Scholar 

  13. A. Hamnett and B.J. Kennedy, Electrochim. Acta 33 (1988) 1613.

    Google Scholar 

  14. K. Scott, W.M. Taama, P. Argyropoulos and K. Sundmacher, J. Power Sources 83 (1999) 204.

    Google Scholar 

  15. S. Cleghorn, X. Ren, S. Thomas and S. Gottesfeld, ‘Book of Extended Abstracts’, 1997 ISE-ECS Joint Symposium, Paris, Sept. (1997), Abstract 182, pp. 218–219.

  16. A.S. Aricò, P. Creti, H. Kim, R. Mantegna, N. Giordano and V. Antonucci, J. Electrochem. Soc. 143 (1996) 3950.

    Google Scholar 

  17. S. C. Thomas, X. Ren and S. Gottesfeld, in S. Gottesfeld and T.F. Fuller (Eds), ‘Proton Conducting Fuel Cells in Proton Conducting Membrane Fuel Cells’ (Second International Symposium), Proc. 98–27, (Electrochemical Society, Pennington, NJ, 1999), pp. 267–272.

    Google Scholar 

  18. T.J. Schmidt, H.A. Gasteiger and R.J. Behm, Electrochem. Commun. 1 (1998) 1.

    Google Scholar 

  19. M. Gotz and H. Wendt, Electrochim. Acta 43 (1998) 3637.

    Google Scholar 

  20. K. Lasch, L. Jorissen and J. Garche, in C. Lamy and H. Wendt (Eds), Proceedings of the Workshop ‘Electrocatalysis in Indirect and Direct Methanol PEM Fuel Cells’, 12–14 Sept. (1999), Portoroz, Slovenia, p. 104.

  21. H. Kim and A. Wieckowski, in O. Savadogo (Ed), Third International Symposium. on ‘New Materials for Fuel Cells and Modern Battery Systems’, Montrèal, Canada (1999), pp. 125–126.

  22. R.M. Moore, S. Gottesfeld and P. Zelenay, in S. Gottesfeld and T.F. Fulles (Eds), ‘Proton Conducting Fuel Cells in Proton Conducting Membrane Fuel Cells’ (Second International Symposium), Proceedings, 98–27, (1999), pp. 365–379.

  23. B.D. McNicol, D.A.J. Rand and K.R. Williams, J. Power Sources 83, (1999) 15.

    Google Scholar 

  24. M. Watanabe and S. Motoo, J. Electroanal. Chem. 60 (1975) 275.

    Google Scholar 

  25. P.S. Kaurenan and E. Skou, J. Electroanal. Chem. 408 (1996) 189.

    Google Scholar 

  26. P.L. Antonucci, A.S. Aricò, P. Cretì, E. Ramunni and V. Antonucci, Solid State Ionics 125 (1999) 431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttin, D., Dupont, M., Straumann, M. et al. Development and operation of a 150 W air-feed direct methanol fuel cell stack. Journal of Applied Electrochemistry 31, 275–279 (2001). https://doi.org/10.1023/A:1017526214805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017526214805

Navigation