Skip to main content
Log in

Review Nonlinearity in piezoelectric ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

An Errata to this article was published on 01 February 2002

Abstract

The paper presents an overview of experimental evidence and present understanding of nonlinear dielectric, elastic and piezoelectric relationships in piezoelectric ceramics. This topic has gained an increasing recognition in recent years due to the use of such materials under extreme operating conditions, for example in electromechanical actuators and high power acoustic transducers. Linear behaviour is generally confined to relatively low levels of applied electric field and stress, under which the dielectric, elastic and piezoelectric relationships are described well by the standard piezoelectric constitutive equations. Nonlinear relationships are observed above certain ‘threshold’ values of electric field strength and mechanical stress, giving rise to field and stress-dependent dielectric (ε), elastic (s) and piezoelectric (d) coefficients. Eventually, strong hysteresis and saturation become evident above the coercive field/stress due to ferroelectric/ferroelastic domain switching. The thermodynamic method provides one approach to describing nonlinear behaviour in the ‘intermediate’ field region, prior to large scale domain switching, by extending the piezoelectric constitutive equations to include nonlinear terms. However, this method seems to fail in its prediction of the amplitude and phase of high frequency harmonic components in the field-induced polarisation and strain waveforms, which arise directly from the nonlinear dielectric and piezoelectric relationships. A better fit to experimental data is given by the empirical Rayleigh relations, which were first developed to describe nonlinear behaviour in soft magnetic materials. This approach also provides an indication of the origins of nonlinearity in piezoelectric ceramics, in terms of ferroelectric domain wall translation (at intermediate field/stress levels) and domain switching (at high field/stress levels). The analogy with magnetic behaviour is also reflected in the use of Preisach-type models, which have been successfully employed to describe the hysteretic path-dependent strain-field relationships in piezoelectric actuators. The relative merits and limitations of the different modelling methods are compared and possible areas of application are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Von Hippel, Rev.Mod.Phys. 22 (1950) 221.

    Google Scholar 

  2. B. Lewis, Proc.Phys.Soc.(London) 73 (1960) 17.

    Google Scholar 

  3. R. Herbiet, U. Robels, H. Dederichs and G. Arlt, Ferroelectrics 98 (1989) 107.

    Google Scholar 

  4. Y. M. Poplavko, V. G. Tsykalov and V. I. Molchanov, Sov.Phys.–Solid State 10 (1969) 2708. (1979) 585.

    Google Scholar 

  5. O. Kersten, M. Hofmann and G. Schmidt, Ferroelectrics Letters 6 (1986) 75.

    Google Scholar 

  6. U. Bottger and G. Arlt, Ferroelectrics 127 (1992) 95.

    Google Scholar 

  7. G. Arlt, U. Bottger and S. Witte, Ann.Physik 3 (1994) 578.

    Google Scholar 

  8. J. G. Smits, IEEE Trans.SU 23 (1976) 393.

    Google Scholar 

  9. Q. M. Zhang, H. Wang, N. Kim and L. E. Cross, J.Appl.Phys. 75 (1994) 454.

    Google Scholar 

  10. D. Berlincourt, J.Acoust.Soc.Am. 91 3034.

  11. K. Carl and K. H. Hardtl, Ferroelectrics 17 (1978) 473.

    Google Scholar 

  12. R. Herbiet, H. Tenbrock and G. Arlt, Ferroelectrics 76 (1987) 319.

    Google Scholar 

  13. G. Arlt, H. Dederichs and R. Herbiet, Ferroelectrics 74 (1987) 37.

    Google Scholar 

  14. S. Li, W. Cao and L. E. Cross, J.Appl.Phys. 69 (1991) 7219.

    Google Scholar 

  15. H.-J. Hagemann, J.Phys.C: Solid State Phys. 11 (1978) 3333.

    Google Scholar 

  16. D. A. Hall, Ferroelectrics 223 (1999) 3191992) 163.

    Google Scholar 

  17. D. A. Hall and M. M. Ben-Omran, J.Phys.: Condensed Matter 10 (1998) 9129.

    Google Scholar 

  18. LORD RAYLEIGH, Phil.Mag. 23 (1887) 225.

    Google Scholar 

  19. D. A. Hall and P. J. Stevenson, Ferroelectrics 228 (1999) 139.

    Google Scholar 

  20. D. A. Hall, in Minutes of the NPL CAM7 IAG Meeting, NPL, 18th March 1998.

  21. D. A. Hall, M. M. Ben-Omran and P. J. Stevenson, J.Phys.: Condensed Matter 10 (1998) 461.

    Google Scholar 

  22. M. Demartin and D. Damjanovic, Appl.Phys.Lett. 68 (1996) 3046.

    Google Scholar 

  23. D. Damjanovic and M. Demartin, J.Phys.D: Appl.Phys. 29 (1996) 2057.

    Google Scholar 

  24. Idem., J.Phys.: Condensed Matter 9 (1997) 4943.

    Google Scholar 

  25. D. Damjanovic, Phys.Rev.B 55 (1997) R649.

    Google Scholar 

  26. S. Sherritt, R. B. Stimpson, H. D. Wiederick and B. K. Mukherjee, in Proc. SPIE Far East and Pacific Rim Symposium on Smart Materials, Structures and MEMS, 1996.

  27. V. Mueller and H. Beige, Proc.ISAF'98 (1998) 459.

  28. V. Mueller and Q. M. Zhang, Appl.Phys.Lett. 72 (1998) 2692.

    Google Scholar 

  29. V. D. Kugel and L. E. Cross, J.Appl.Phys. 84 (1998) 2815.

    Google Scholar 

  30. S. Sherrit, H. D. Wiederick, B. K. Mukherjee and M. Sayer, in SPIE Conference on Smart Structures and Materials 1997 (1997) SPIE Proc. Vol 3040, p. 99.

    Google Scholar 

  31. H. H. A. Krueger, J.Acoust.Soc.Am. 42 (1967) 636.

    Google Scholar 

  32. Idem., ibid. 43 (1967) 583.

  33. H. Cao and A. G. Evans, J.Am.Ceram.Soc. 76 (1993) 890.

    Google Scholar 

  34. A. B. SchÄufele and K. H. HÄrdtl, ibid. 79 (1996) 2637.

    Google Scholar 

  35. C. Heilig and K. H. HÄrdtl, Proc.ISAF'98 (1998) 503.

  36. N. Aurelle, D. Guyomar, C. Richard, P. Gonnard and L. Eyraud, Ultrasonics 34 (1996) 187.

    Google Scholar 

  37. P. Gonnard, V. Perrin, R. Briot, D. Guyomar and A. Albareda, Proc.ISAF'98 (1998)353.

  38. K. Ishii, N. Akimoto, S. Tashiro and H. Igarashi, J.Ceram.Soc.Japan 106 (1998) 555.

    Google Scholar 

  39. W. R. Buessem, L. E. Cross and A. K. Goswami, J.Am.Ceram.Soc. 49 (1966) 33.

    Google Scholar 

  40. Idem., ibid. 49 (1966) 36.

  41. M. E. Lines and A. M. Glass, “Principles and Applications of Ferroelectrics and Related Materials” (Oxford Unviersity Press, 1977).

  42. J. L. Butler and K. D. Rolt, J.Acoust.Soc.Am. 96 (1994) 1914.

    Google Scholar 

  43. J. Zhao and Q. M. Zhang and V. Mueller, Proc. ISAF'96 (1996) 971.

  44. D. A. Hall, P. J. Stevenson and S. W. Mahon, NATO Science Series 3.High Technology 76 (2000)149.

    Google Scholar 

  45. O. Steiner, A. K. Tagantsev, E. L. Colla and N. Setter, J.Eur.Ceram.Soc. 19 (1999) 1243.

    Google Scholar 

  46. P. J. Stevenson, D. A. Hall and S. W. Mahon, unpublished work.

  47. V. Perrin, M. Troccaz and P. Gonnard, J.Electroceramics 4 (1999) 189.

    Google Scholar 

  48. D. Damjanovic, Rep.Prog.Phys. 61 (1998) 1267.

    Google Scholar 

  49. S. P. Joshi, Smart Mater.Struct. 1 (1992) 80.

    Google Scholar 

  50. D. Damjanovic, J.Appl.Phys. 82 (1997) 1788.

    Google Scholar 

  51. P. Weiss and D. De Freudenreich, Arch.Sc.Phys.Nat. Geneve 42 (1916) 449.

    Google Scholar 

  52. F. Preisach, Zeitschrift fur Physiks 94 (1935) 277.

    Google Scholar 

  53. L. Neel, Cahiers de Physique 12 (1942) 1.

    Google Scholar 

  54. Idem., Adv.Phys. 4 (1955) 191.

    Google Scholar 

  55. G. Bertotti, “Hysteresis in Magnetism” (Academic Press, 1998).

  56. D. Jiles, “Introduction to Magnetism and Magnetic Materials” (Chapman and Hall, 1991).

  57. H. Kronmuller, Z.Angew.Physik 30 (1970) 9.

    Google Scholar 

  58. J. Degauque, B. Astie, J. L. Porteseil and R. Vergne, J.Magnetism and Magnetic Mater. 26 (1982) 261.

    Google Scholar 

  59. B. Astie, J. Degauque, J. L. Porteseil and R. Vergne, ibid. 28 (1982) 149.

    Google Scholar 

  60. D. Damjanovic, NATO Science Series 3.High Technology 76 (2000) 123.

    Google Scholar 

  61. O. Boser, J.Appl.Phys. 62 (1987) 1344.

    Google Scholar 

  62. D. Damjanovic, G. Robert, J. Muller, M. Demartin Maeder, D. V. Taylor and N. Setter, inProc. ISAF 2000 (in press).

  63. S. C. Hwang, C. S. Lynch and R. M. McMeeking, Acta Metall.Mater. 43 (1995) 2073.

    Google Scholar 

  64. S. C. Hwang, J. E. Huber, R. M. McMeeking and N. A. Fleck, J.Appl.Phys. 84 (1998) 1530.

    Google Scholar 

  65. S. C. Hwang and R. M. McMeeking, Int.J.Solids and Structures 36 (1999) 1541.

    Google Scholar 

  66. W. Cao and L. E. Cross, Phys.Rev.B 44 (1991) 5.

    Google Scholar 

  67. G. Arlt, Ferroelectrics 76 (1987) 451.

    Google Scholar 

  68. Idem., J.Mat.Sci. 25 (1990) 2655.

    Google Scholar 

  69. N. A. Pertsev and G. Arlt, Ferroelectrics 123 (1991) 27.

    Google Scholar 

  70. G. Arlt and N. A. Pertsev, J.Appl.Phys. 70 (1991) 2283.

    Google Scholar 

  71. G. Arlt, Ferroelectrics 189 (1996) 91.

    Google Scholar 

  72. Idem., ibid. 189 (1996) 103.

  73. Idem., Integrated Ferroelectrics 16 (1997) 229.

  74. T. Steinkopff, J.Eur.Ceram.Soc. 19 (1999) 1247.

    Google Scholar 

  75. C. Schuh, K. Lubitz, T. Steinkopff and A. Wolff, NATO Science Series 3.High Technology 76 (2000) 391.

    Google Scholar 

  76. D. Ricinschi, C. Harnageo, C. Papuso, L. Mitoseriu, V. Tura and M. Okuyama, J.Phys.: Condensed Matter 10 (1998) 477.

    Google Scholar 

  77. R. W. Janse Van Rensburg and V. C. Humberstone, NPL Project AM4: Test Method Development for the High Stress Characterisation of Piezoelectric, Electrostrictive and Magnetostrictive Materials (1996).

  78. C. Newcomb and I. Flynn, Electron.Lett. 18 (1982) 442.

    Google Scholar 

  79. P. Ge and M. Jouaneh, Prec.Eng. 17 (1995) 211.

    Google Scholar 

  80. Idem., ibid. 20 (1997) 99.

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1023/A:1017454330862

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hall, D.A. Review Nonlinearity in piezoelectric ceramics. Journal of Materials Science 36, 4575–4601 (2001). https://doi.org/10.1023/A:1017959111402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017959111402

Keywords

Navigation