Skip to main content
Log in

Deformation mechanisms in cellulose fibres, paper and wood

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of Raman spectroscopy in probing the deformation mechanisms of cellulose fibres (regenerated and natural), and two natural cellulose composite systems (wood and paper) is described. It is shown that during tensile deformation the 1095 cm−1 Raman band, corresponding to the stretching of the cellulose ring structure, shifts towards a lower wavenumber due to molecular deformation. By analysing a number of fibres with different microstructures this shift is shown to be invaluable in understanding the micromechanisms of deformation in these materials. Moreover, the rate of Raman band shift is shown to be invariant with stress for all fibre types, consistent with a fibre microstructure based on a modified series aggregate model. In the composite systems, such as wood and paper, it is shown that the stress-induced Raman band shift in the cellulose gives an important insight into their local deformation micromechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-Y. Yeh and R. J. Young, Polymer 40 (1999) 85.

    Google Scholar 

  2. C. Woodcock and A. Sarko, Macromolecules 13 (1980) 1183.

    Google Scholar 

  3. A. Sarko and R. Muggli, ibid. 7 (1974) 480.

    Google Scholar 

  4. S. J. Eichhorn, M. L. Hughes, R. Snell and L. Mott, J. Mater. Sci. Lett. 19 (2000) 721.

    Google Scholar 

  5. S. J. Eichhorn, R. J. Young and W.-Y. Yeh, Textile Research Journal 71(2) (2001) 121.

    Google Scholar 

  6. A. J. Panshin and De C. Zeeuw, in “Textbook of Wood Technology” (McGraw-Hill, New York, 1970).

    Google Scholar 

  7. L. Mott, S. M. Shaler and L. H. Groom, Wood and Fiber Science 28 (1996) 429.

    Google Scholar 

  8. P. Navi, P. K. Rastogi, V. Gresse and A. Tolou, Wood Science and Technology 29 (1995) 411.

    Google Scholar 

  9. H. L Cox, Brit. J. Appl. Phys. 3 (1952) 72.

    Google Scholar 

  10. D. H. Page, Tappi J. 52(4) (1969) 674.

    Google Scholar 

  11. O. Kallmes, G. Bernier and M. A. Perez, Paper Tech. and Ind. 18 (1977) 222, 243, 283, 328.

    Google Scholar 

  12. K. M. Entwistle and N. J. Terrill, J. Mater. Sci. 35 (2000) 1675.

    Google Scholar 

  13. D. W. Marquardt, J. Soc. Ind. Appl. Math. 11 (1963) 431.

    Google Scholar 

  14. R. H. Atalla and S. C. Nagel, Science 185 (1974) 522.

    PubMed  Google Scholar 

  15. R. H. Atalla, Appl. Polym. Symp. 28 (1976) 659.

    Google Scholar 

  16. R. J. Young, J. Text. Inst. 86 (1995) 360.

    Google Scholar 

  17. R. H. Atalla and U. P. Agarwal, Science 227 (1985) 636.

    Google Scholar 

  18. J. Sirichaisit. Ph.D. Thesis, UMIST, UK, 2000.

    Google Scholar 

  19. W. G. Glasser, in “Pulp and Paper Chemistry and Chemical Technology” (Wiley InterScience, New York, 1980) p. 39.

    Google Scholar 

  20. D. Hull and T.W. Clyne, “An Introduction to Composite Materials,” 2nd ed., (Cambridge University Press, 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, S.J., Sirichaisit, J. & Young, R.J. Deformation mechanisms in cellulose fibres, paper and wood. Journal of Materials Science 36, 3129–3135 (2001). https://doi.org/10.1023/A:1017969916020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017969916020

Keywords

Navigation