Skip to main content
Log in

Microsatellite DNA in fishes

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

For the last 30 years, attempts have been made to discriminate among fish populations by using molecular markers. Although some techniques have proved successful in certain circumstances, the consistent trend to newer markers among fishery geneticists highlights the general lack of resolving power observed with older technologies. The last decade has seen the increasing use of satellite DNA in investigations of genetic variability and divergence. Applications to fish and fisheries-related issues initially concentrated on minisatellite single-locus probes. Although minisatellites have successfully addressed a number of fishery-related questions, this class of satellite DNA has not been widely adopted by fishery geneticists. Most of the current research effort is concentrated on another class of satellite DNA called microsatellites. The large interest in microsatellite loci is largely due to the very high levels of variability that have been observed and the ability to investigate this variation using PCR technology. The isolation and application of microsatellites to research fields as diverse as population genetics, parentage analyses and genome mapping are reviewed. Despite the undisputed advantages that the marker possesses, there are a number of potential problems associated with investigating variation at microsatellite loci. Statistical considerations (e.g. appropriate sample sizes, number of loci and the mutation model assumptions on which the estimate is based) have not been considered in detail yet and the problems are often exacerbated in fish species, as some species show very large numbers of alleles at microsatellite loci. These issues and others, e.g. null alleles, are reviewed and possible solutions are proposed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, P.J., Amos, W., Pomeroy, P.P. and Twiss, S.D. (1995) Microsatellite variation in grey seals (Halichoerus grypus) show evidence of genetic differentiation between two British breeding colonies. Mol. Ecol. 4, 653–662.

    Google Scholar 

  • Allendorf, F.W. and Thorgaard, G.H. (1984) Tetraploidy and the evolution of salmonid fishes. In Turner, B.J., ed. Evolutionary Genetics of Fishes. New York: Plenum Press, pp. 1–53.

    Google Scholar 

  • Ambali, A.J.D. (1996) The relationship between domestication and genetic diversity of Oreochromis species in Malawi: Oreochromis shiranus shiranus (Boulenger) and Oreochromis shiranus chilwae (Trewavas). PhD thesis, Dalhousie Univ., Canada. 204 pp.

    Google Scholar 

  • Amos, B., Barrett, J. and Dover, G.A. (1991) Breeding behaviour of pilot whales revealed by DNA fingerprinting. Heredity 67, 49–55.

    Google Scholar 

  • Andersson, L., Haley, C.S., Ellegren, H., Knott, S.A., Johansson, M., Andersson, K., Andersson-Eklund, L., Edfors-Lilja, I., Fredholm, M., Hansson, I., Hakansson, J. and Lundstrom, K. (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Genetics 263, 1771–1774.

    Google Scholar 

  • Angers, B., Bernatchez, L., Angers, A. and Desgroseillers, L. (1995) Specific microsatellite loci for brook charr reveal strong population subdivision on a microgeographic scale. J. Fish Biol. 47, 177–185.

    Google Scholar 

  • Anon. (1995) SPAM 1.01-Statistics Program for Analyzing Mixtures. Alaska Dept of Fish and Game, Division of Commercial Fisheries Management and Development, Genetics Lab, 333 Raspberry Rd, Anchorage, AK 99518.

  • Armour, J.A.L., Neumann, R., Gobert, S. and Jeffreys, A.J. (1995) Isolation of human simple sequence repeat loci by hybridization selection. Hum. Mol. Genet. 3, 599–605.

    Google Scholar 

  • Arnason, E., Palsson, S. and Arason, S. (1992) Gene flow and lack of population differentiation in Atlantic cod, Gadus morhua L., from Iceland and a comparison of cod from Norway and Newfoundland. J. Fish Biol. 40, 751–770.

    Google Scholar 

  • Avise, J.C. and Smith, M.H. (1974) Biochemical genetics of sunfish. I. Geographic variation and subspeci fic intergradation in the bluegill, Lepomis macrochirus. Evolution 28, 42–56.

    Google Scholar 

  • Bartley, D., Bagley, M., Gall, G. and Bentley, B. (1992) Use of linkage disequilibrium data to estimate effective population size of hatchery and natural fish populations. Cons. Biol. 6, 365–375.

    Google Scholar 

  • Bentzen, P., Harris, A.S. and Wright, J.M. (1991) Cloning of hypervariable minisatellite and simple sequence microsatellite repeats for DNA fingerprinting of important aquacultural species of salmonids and tilapia. In Burke, T., Dolf, G., Jeffreys, A.J. and Wolf, R., eds. DNA Fingerprinting Approaches and Application. Basel, Switzerland: Birkhauser Verlag, pp. 243–262.

    Google Scholar 

  • Bentzen, P., Taggart, C.T., Ruzzante, D.E. and Cook, D. (1996) Microsatellite polymorphism and the population structure of Atlantic cod (Gadus morhua) in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 53, 2706–2721.

    Google Scholar 

  • Bermingham, E., Friedland, K., Forbes, S. and Pla, C. (1991) Discrimination between Atlantic salmon (Salmo salar) of North American and European origin using restriction analyses of mitochondrial DNA. Can. J. Fish. Aquat. Sci. 48, 884–893.

    Google Scholar 

  • Bernatchez, L., Guyomard, R. and Bonhomme, F. (1992) DNA sequence variation of mitochondrial control region among geographically and morphologically remote European brown trout (Salmo trutta) populations. Mol. Ecol. 1, 161–174.

    Google Scholar 

  • Bradshaw, H.D.J., Wilbert, S.M., Otto, K.G. and Schemske, D.W. (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376, 762–765.

    Google Scholar 

  • Brooker, A.L., Cook, D. Bentzen, P., Wright, J.M. and Doyle, R.W. (1994) Organization of microsatellites differs between mammals and cold-water teleost fishes. Can. J. Fish. Aquat. Sci. 51, 1959–1966.

    Google Scholar 

  • Burke, T. and Bruford, M.W. (1987) DNA fingerprinting in birds. Nature 327, 149–152.

    Google Scholar 

  • Callen, D.F., Thompson, A.D., Shen, Y., Phillips, H.A., Richards, R.I., Mulley, J.C. and Sutherland, G.R. (1993) Incidence and origin of ‘null’ alleles in the (AC)n microsatellite markers. Am. J. Hum. Genet. 52, 922–927.

    Google Scholar 

  • Carter, R.E., Mair, G.C., Skibinski, D.O.F., Parkin, D.T. and Beardmore, J.A. (1991) The application of DNA fingerprinting in the analysis of gynogenesis of tilapia. Aquaculture 95, 41–52.

    Google Scholar 

  • Carvalho, G.R. and Hauser, L. (1994) Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4, 326–350.

    Google Scholar 

  • Chakraborty, R. (1992) Sample size requirements for addressing the population genetics issues of forensic use of DNA typing. Hum. Biol. 64, 141–159.

    Google Scholar 

  • Colbourne, J.K., Neff, B.D., Wright, J.M. and Gross, M.R. (1996) DNA fingerprinting of bluegill sunfish (Lepomis macrochirus) using (GT)n microsatellites and its potential for assessment of mating success. Can. J. Fish. Aquat. Sci. 53, 342–349.

    Google Scholar 

  • Coyne, J.A. and Charlesworth, B. (1986) Location of an X-linked factor causing sterility in male hybrids of Drosophila simulans and D. mauritiana. Heredity 57, 243–246.

    Google Scholar 

  • Cross, T.F. and Payne, R.H. (1978) Geographic variation in Atlantic cod, Gadus morhua, off eastern North America: a biochemical systematics approach. J. Fish. Res. Bd Can. 35, 117–123.

    Google Scholar 

  • DiRienzo, A., Peterson, A.A., Garza, J.C., Valdes, A.M., Slatkin, M. and Freimer, N.B. (1994) Mutational processes of simple sequence repeat loci in human populations. Proc. Natl Acad. Sci. USA 91, 3166–3170.

    Google Scholar 

  • Dueck, L.A. (1994) Population divergence of introduced rainbow trout (Oncorhynchus mykiss) in the Lake Ontario watershed, based on the mitochondrial genome. MSc thesis, Univ. of Guelph, Canada. 173 pp.

    Google Scholar 

  • Edwards, K.J., Barker, J.H.A., Daly, A., Jones, C. and Karp, A. (1995) Microsatellite libraries enriched for several microsatellites sequences in plants. Biotechniques 20, 758–760.

    Google Scholar 

  • Estoup, A., Presa, P., Krieg, F., Vaiman, D. and Guyomard, R. (1993) (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71, 488–496.

    Google Scholar 

  • Estoup, A., Tailliez, C., Cornuet, J.-M. and Solignac, M. (1995) Size homoplasy and mutational processes of interrupted microsatellites in two bee species, Apis mellifera and Bombus terrestris (Apidae). Mol. Biol. Evol. 12, 1074–1084.

    Google Scholar 

  • Ferguson, A., Taggart, J.B., Prodohl, P.A., McMeel, O., Thompson, C., Stone, C., McGinnity, P. and Hynes, R.A. (1995) The application of molecular markers to the study and conservation of fish populations, with special reference to Salmo. J. Fish Biol. 47 (Suppl. A), 103–126.

    Google Scholar 

  • Ferguson, M. (1994) The role of molecular genetic markers in the management of cultured fishes. Rev. Fish Biol. Fish. 4, 351–373.

    Google Scholar 

  • Galvin, P., McGregor, D. and Cross, T. (1995a) A single locus minisatellite as a hypervariable genetic marker in gadoid species. Aquaculture 137, 31–40.

    Google Scholar 

  • Galvin, P., McKinnell, S., Taggart, J.B., Ferguson, A., O'Farrell, M. and Cross, T.F. (1995b) Genetic stock identification of Atlantic salmon using single locus minisatellite DNA profiles. J. Fish Biol. 47 (Suppl. A), 186–199.

    Google Scholar 

  • Galvin, P., Sadusky, T., McGregor, D. and Cross, T. (1995c) Population genetics of Atlantic cod using amplified single locus minisatellite VNTR analysis. J. Fish Biol. 47 (Suppl. A), 200–208.

    Google Scholar 

  • Garcia de Leon, F.J., Dallas, J.F., Chatain, B., Canonne, M., Versini, J.J. and Bonhomme, F. (1995) Development and use of microsatellite markers in sea bass, Dicentrarchus labrax (Linnaeus, 1758) (Perciformes: Serranidae). Mol. Biol. Biotech. 4, 62–68.

    Google Scholar 

  • Garza, J.C., Slatkin, M. and Freimer, N.B. (1995) Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol. Biol. Evol. 12, 594–603.

    Google Scholar 

  • Goff, D.J., Galvin, K., Katz, H., Westerfield, M., Lander, E.S. and Tabin, C.J. (1992) Identification of polymorphic simple sequence repeats in the genome of the zebrafish. Genomics 14, 200–202.

    Google Scholar 

  • Goldstein, D.B., Linares, A.R., Cavilli-Sforza, L.L. and Feldman, M.W. (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139, 463–471.

    Google Scholar 

  • Goudet, J. (1996) F-STAT (1.2), a program for IBM PC compatible to calculate Weir and Cockerham's (1984) estimators of F-statistics. Institute de Zoologie et d'Ecologie Animale, Batiment de Biologie, Universite de Lausanne, CH-1015 Dorigny, Switzerland.

  • Grant, W.S. and Utter, F.M. (1984) Biochemical genetics of Pacific herring (Clupea pallasi). Can. J. Fish. Aquat. Sci. 41, 856–864.

    Google Scholar 

  • Greider, C.W. (1991) Telomeres. Curr. Opinion Cell Biol. 3, 444–451.

    Google Scholar 

  • Guo, S.W. and Thompson, E.A. (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372.

    Google Scholar 

  • Haley, C.S. and Knott, S.A. (1994) Interval mapping. In Proc. 5th World Congress on Genetics Applied to Livestock Production, Vol. 21. Guelph, Ontario: Dept of Animal and Poultry Sciences, Univ. of Guelph, pp. 25–32.

    Google Scholar 

  • Harris, A.H. and Wright, J.M. (1995) Nucleotide sequence and genomic organization of cichlid fish minisatellites. Genome 38, 177–184.

    Google Scholar 

  • Harris, A.H., Bieger, S., Doyle, R.W. and Wright, J.M. (1991) DNA fingerprinting of tilapia, Oreochromis niloticus, and its application to aquaculture genetics. Aquaculture 92, 157–163.

    Google Scholar 

  • Harris, H. and Hopkinson, D. (1976) Handbook of Enzyme Electrophoresis in Human Genetics. New York: American Elsevier.

    Google Scholar 

  • Hartl, D.L. and Clark, A.G. (1989) Principles of Population Genetics. Sunderland, MA: Sinauer Assoc.

    Google Scholar 

  • Hedgecock, D. (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In Beaumont, A.R., ed. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall, pp. 122–134.

    Google Scholar 

  • Herbinger, C.M., Doyle, R.W., Pitman, E.R., Paquet, D., Mesa, K.A., Morris, D.B., Wright, J.M. and Cook, D. (1996a) DNA fingerprint based analysis of paternal and maternal effects on offspring growth and survival in communally reared rainbow trout. Aquaculture 137, 245–256.

    Google Scholar 

  • Herbinger, C.M., Doyle, R.W., Taggart, C.T., Lochmann, S.E., Brooker, A.L., Wright, J.M. and Cook, D. (1996b) Family relationships and effective population size in a natural cohort of cod larvae. Can. J. Fish. Aquat. Sci. 54 (Suppl. 1), 11–18. [1997].

    Google Scholar 

  • Hershberger, W.K. (1992) Genetic variability in rainbow trout populations. Aquaculture 100, 51–71.

    Google Scholar 

  • Hunter, R.L. and Markert, C.L. (1957) Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125, 1294–1295.

    Google Scholar 

  • Jackson, T.R. (1995) Linkage analysis of molecular markers and a search for quantitative trait loci for upper temperature tolerance in rainbow trout (Oncorhynchus mykiss). PhD thesis, Univ. of Guelph, Canada. 81 pp.

    Google Scholar 

  • Jarne, P. and Lagoda, P.J.L. (1996) Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11, 424–429.

    Google Scholar 

  • Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985a) Hypervariable “minisatellite” regions in human DNA. Nature 314, 67–73.

    Google Scholar 

  • Jeffreys, A.J., Wilson, V. and Thein, S.L. (1985b) Individual-specific ‘fingerprints’ of human DNA. Nature 316, 76–9.

    Google Scholar 

  • Jeffreys, A.J., Wilson, V., Kelly, R., Taylor, B.A. and Bulfield, G. (1987) Mouse DNA “fingerprint” analysis of chromosome localization and germ-line stability of hypervariable loci in recombinanat inbred strains. Nucleic Acids Res. 15, 2823–2837.

    Google Scholar 

  • Jeffreys, A.J., Royle, N.J., Patel, I., Armour, J.A.L., MacCleod, A., Collick, A., Gray, I.C., Neumann, R., Gibbs, M., Crossier, M., Hill, M., Signer, E. and Monckton, D. (1991) Principles and recent advances in human DNA fingerprinting. In Burke, T., Dolf, G., Jeffreys, A.J. and Wolf, R., eds. DNA Fingerprinting Approaches and Application. Basel, Switzerland: Birkhauser Verlag, pp. 1–19.

    Google Scholar 

  • Jones, M.W., Clay, D. and Danzmann, R.G. (1996) Conservation genetics of brook trout (Salvelinus fontinalis): population structuring in Fundy National Park, New Brunswick, and eastern Canada. Can. J. Fish. Aquat. Sci. 53, 2776–2791.

    Google Scholar 

  • Jordan, W.C., Youngson, A.F., Hay, D.W. and Ferguson, A. (1992) Genetic protein variation in natural populations of Atlantic salmon (Salmo salar): temporal and spatial variation. Can. J. Fish. Aquat. Sci. 49, 1863–1872.

    Google Scholar 

  • Kamonrat, W. (1996) Spatial genetic structure of Thai Silver barb, Puntius gonionotus, (Bleeker) populations in Thailand. PhD thesis, Dalhousie Univ., Canada. 193 pp.

    Google Scholar 

  • Karagyozov, L., Kalcheva, I.D. and Chapman, V.M. (1993) Construction of random small insert genomic libraries highly enriched for simple sequence repeats. Nucleic Acids Res. 21, 3911–3912.

    Google Scholar 

  • Kellogg, K.A., Markert, J.A., Stauffer, J.R. and Kocher, T.D. (1995) Microsatellite variation demonstrates multiple paternity in lekking cichlid fish from Lake Malawi, Africa. Proc. R. Soc. Lond. 260B, 79–84.

    Google Scholar 

  • Kijas, J.M.H., Fowler, J.C.S., Garbett, C.A. and Thomas, M.R. (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16, 656–662.

    Google Scholar 

  • Kimura, M. and Weiss, G.H. (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49, 561–576.

    Google Scholar 

  • Kincaid, H.L. (1976) Inbreeding in rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can. 33, 2420–2426.

    Google Scholar 

  • Klein, D., Ono, H., O'hUigin, C., Vincek, V., Goldschmidt, T. and Klein, J. (1993) Extensive MHS variability in cichlid fishes. Nature 364, 330–334.

    Google Scholar 

  • Lansman, R.A., Shade, R.O., Shapiro, J.F. and Avise, J.C. (1981) The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations III. Techniques and potential applications. J. Mol. Evol. 17, 214–226.

    Google Scholar 

  • Lee, W.-J. and Kocher, T.D. (1996) Microsatellite DNA markers for genetic mapping in Oreochromis niloticus. J. Fish Biol. 49, 169–171.

    Google Scholar 

  • McConnell, S.K., Hamilton, L., Morris, D., Cook, D., Pacquet, D., Bentzen, P. and Wright, J.M. (1995a) Isolation of salmonid microsatellite loci and their application to the population genetics of Canadian east coast stocks of Atlantic salmon. Aquaculture 137, 19–30.

    Google Scholar 

  • McConnell, S.K., O'Reilly, P., Hamilton, L., Wright, J.M. and Bentzen, P. (1995b) Polymorphic microsatellite loci from Atlantic salmon (Salmo salar): genetic differentiation of North American and European populations. Can. J. Fish. Aquat. Sci. 52, 1863–1872.

    Google Scholar 

  • McConnell, S.K., Ruzzante, D.E., O'Reilly, P.T., Hamilton, L. and Wright, J.M. (1997a) Microsatellite loci reveal highly significant genetic differentiation between Atlantic salmon (Salmo salar L.) populations from the east coast of Canada. Mol. Ecol. (in press).

  • McConnell, S.K., Franck, J.P.C. and Wright, J.M. (1997b) Molecular genetic markers and their applications to the Tilapias. In Mair, G., ed. Reviews in Applied Genetics of Tilapia. Manila: ICLARM (in press).

    Google Scholar 

  • McGregor, D., Galvin, P., Sadusky, T. and Cross, T. (1996) PCR amplification of a polymorphic minisatellite VNTR locus in whiting (Merlangius merlangius L.). Anim. Genet. 27, 49–51.

    Google Scholar 

  • May, B. and Johnson, K. (1993) Composite linkage map of salmonid fishes (Salvelinus, Salmo, Oncorhynchus). In O'Brien, S., ed. Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. pp. 151–159.

    Google Scholar 

  • Mitchell-Olds, T. (1995) The molecular basis of quantitative genetic variation in natural populations. Trends Ecol. Evol. 10, 324–328.

    Google Scholar 

  • Moller, D. (1970) Transferrin polymorphism in Atlantic salmon (Salmo salar). J. Fish Res. Bd Can. 27, 1617–1625.

    Google Scholar 

  • Montgomery, G.W., Penty, J.M., Henry, H.M. Sise, J.A., Lord, E.A., Dodds, K.G. and Hill, D.F. (1995) Sheep linkage mapping: RFLP markers for the comparative mapping studies. Anim. Genet. 26, 249–259.

    Google Scholar 

  • Morizot, D.C. and Siciliano, M.J. (1983) Comparative gene mapping in fishes. In Rattazzi, M.C., Scandalios, J.G. and Whitt, G.S., eds. Isozymes: Current Topics in Biological and Medical Research. New York: Alan R. Liss Inc., pp. 261–285.

    Google Scholar 

  • Morris, D.B., Richard, K.R. and Wright, J.M. (1996) Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic studies of salmonids. Can. J. Fish. Aquat. Sci. 53, 120–126.

    Google Scholar 

  • Nielsen, J.L., Gan, C.A., Wright, J.M., Morris, D.B. and Thomas, W.K. (1994) Biogeographic distributions of mitichondrial and nuclear markers for southern steelhead. Mol. Mar. Biol. Biotech. 3, 281–293.

    Google Scholar 

  • O'Connell, M., Skibinski, D.O.F. and Beardmore, J.A. (1995) Mitochondrial DNA and allozyme variation in Atlantic salmon (Salmo salar) populations in Wales. Can. J. Fish. Aquat. Sci. 52, 171–178.

    Google Scholar 

  • O'Connell, M., Danzmann, R.G., Cornuet, J.-M., Wright, J.M. and Ferguson, M.M. (1996a) Differentiation of rainbow trout populations in Lake Ontario and the evaluation of the stepwise mutation and infinite allele mutation models using microsatellite variability. Can. J. Fish. Aquat. Sci. 54 (in press).

  • O'Connell, M., Dillon, M.C. and Wright, J.M. (1996b) Development of microsatellite markers for genetic discrimination of Prince William Sound herring populations. Report to the Alaska Dept of Fish and Game. 31 pp.

  • O'Connell, M., Skibinski, D.O.F. and Beardmore, J.A. (1996c) Allozyme and mtDNA divergence between Atlantic salmon populations in North Wales. J. Fish Biol. 48, 1023–1026.

    Google Scholar 

  • O'Reilly, P. and Wright, J.M. (1995) The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J. Fish Biol. 47 (Suppl. A), 29–55.

    Google Scholar 

  • O'Reilly, P.T., Hamilton, L.C., McConnell, S.K. and Wright, J.M. (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can. J. Fish. Aquat. Sci. 53, 2292–2298.

    Google Scholar 

  • Ostrander, E.A., Jong, P.M., Rine, J. and Duyck, G. (1992) Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proc. Natl Acad. Sci. USA 89, 3419–3423.

    Google Scholar 

  • Paetkau, D. and Strobeck, C. (1995) The molecular basis and evolutionary history of a null allele in bears. Mol. Ecol. 4, 519–520.

    Google Scholar 

  • Pemberton, J.M., Slate, J., Bancroft, D.R. and Barrett, J.A. (1995) Non-amplifying alleles at microsatellite loci: a caution for parentage and fingerprinting studies. Mol. Ecol. 4, 519–520.

    Google Scholar 

  • Pogson, G.H., Mesa, K.A. and Boutillier, R.G. (1995) Genetic population structure and gene flow in the Atlantic cod Gadus morhua: a comparison of allozyme and nuclear RFLP loci. Genetics 139, 375–385.

    Google Scholar 

  • Poopuang, S. and Hallerman, E.M. (1996) Towards detection of quantitative trait loci and genetic marker assisted selection in fish. Rev. Fish. Sci. (in press).

  • Postlethwait, J.H., Johnson, S.L., Midson, C.N., Talbot, W.S., Gates, M., Ballinger, E.W., Africa, D., Andrews, R., Carl, T., Eisen, J.S., Horne, S., Kimmel, C.B., Hutchinson, M., Johnson, M. and Rodriguez, M.A. (1994) A genetic linkage map for the zebrafish. Science 264, 699–703.

    Google Scholar 

  • Prodohl, P.A., Taggart, J.B. and Ferguson, A. (1994a) Cloning of highly variable minisatellite DNA single locus probes for brown trout (Salmo trutta L.) from a phagemid library. In Beaumont, A.R., ed. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall, pp. 263–270.

    Google Scholar 

  • Prodohl, P.A., Taggart, J.B. and Ferguson, A. (1994b) Single locus inheritance and joint segregation analysis of minisatellite (VNTR) DNA loci in brown trout (Salmo trutta L.). Heredity 73, 556–566.

    Google Scholar 

  • Reisenbichler, R.R. and Phelps, S.R. (1989) Genetic variation in steelhead trout (Salmo gairdneri) from the North coast of Washington. Can. J. Fish. Aquat. Sci. 46, 66–73.

    Google Scholar 

  • Rico, C., Zadworny, D., Kuhnlein, U. and FitzGerald, J.G. (1993) Characterization of microsatellite loci in the three-spine stickleback, Gasterosteus aculeatus. Mol. Ecol. 2, 271–272.

    Google Scholar 

  • Rico, C., Rico, I. and Hewitt, G. (1996) 470 million years of conservation of microsatellite loci among fish species. Proc. R. Soc. Lond. 263, 549–557.

    Google Scholar 

  • Roff, D.A. and Bentzen, P. (1989) The statistical analyses of mitochondrial DNA polymorphisms: ϰ2 and the problem of small sample sizes. Mol. Biol. Evol. 6, 539–546.

    Google Scholar 

  • Royle, N.J., Clarkson, R.E., Wong, Z. and Jeffreys, A.J. (1988) Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3, 352–360.

    Google Scholar 

  • Ruzzante, D.E., Taggart, C.T., Cook, D. and Goddard, S. (1996) Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua L.) off Newfoundland: microsatellite DNA variation and anti-freeze level. Can. J. Fish. Aquat. Sci. 53, 634–645.

    Google Scholar 

  • Sakamoto, T., Okamoto, N., Ikeda, Y., Nakamura, Y. and Sato, T. (1994a) Dinucleotide repeat polymorphism in DNA of rainbow trout and its application in fishery science. J. Fish Biol. 44, 1093–1096.

    Google Scholar 

  • Sakamoto, T., Okamoto, N. and Ikeda, Y. (1994b) Dinucleotide repeat polymorphism of rainbow trout, FGT2. J. Anim. Sci. 72, 2765.

    Google Scholar 

  • Sakamoto, T., Okamoto, N. and Ikeda, Y. (1994c) Dinucleotide repeat polymorphism of rainbow trout, FGT3. J. Anim. Sci. 72, 2765.

    Google Scholar 

  • Sax, K. (1923) The relation between chromosome number, morphological characters and rust resistance in segregates of partially sterile wheat hybrids. Genetics 8, 301–321.

    Google Scholar 

  • Scribner, K.T., Gust, J.R. and Fields, R.L. (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetics applications. Can. J. Fish. Aquat. Sci. 53, 833–841.

    Google Scholar 

  • Shriver, M.D., Jin, L., Chakraborty, R. and Boerwinkle, E. (1993) VNTR allele frequency distribution under the stepwise mutation model. Genetics 134, 983–993.

    Google Scholar 

  • Sick, K. (1961) Haemoglobin polymorphism in fishes. Nature, Lond. 192, 894–896.

    Google Scholar 

  • Skibinski, D.O.F. (1994) DNA technology and genetics of aquatic invertebrates. In Beaumont, A.R., ed. Genetics and Evolution of Aquatic Organisms. London: Chapman and Hall, pp. 177–199.

    Google Scholar 

  • Slatkin, M. (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462.

    Google Scholar 

  • Slettan, A., Olsaker, I. and Lie, O. (1993) Isolation and characterization of (GT)n repetitive sequences from Atlantic salmon, Salmo salar L. Anim. Genet. 24, 195–197.

    Google Scholar 

  • Slettan, A., Olsaker, I. and Lie, O. (1995a) Atlantic salmon, Salmo salar, microsatellites at the Ssosl25, Ssosl85, Ssosl311, Ssosl417 loci. Anim. Genet. 26, 281–282.

    Google Scholar 

  • Slettan, A., Olsaker, I. and Lie, O. (1995b) A polymorphic dinucleotide repeat microsatellite in Atlantic salmon, Salmo salar (Ssosl436). Anim. Genet. 26, 368.

    Google Scholar 

  • Soller, M., Brody, T. and Genizi, A. (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theor. Appl. Genetic. 47, 35–39.

    Google Scholar 

  • Stahl, G. (1987) Genetic population structure of Atlantic salmon. In Ryman, N. and Utter, F., eds. Population Genetics and Fishery Management. Seattle, WA: University of Washington Press, pp. 121–140.

    Google Scholar 

  • Taggart, J.B. and Ferguson, A. (1990) Hypervariable minisatellite DNA single locus probes for Atlantic salmon, Salmo salar L. J. Fish. Biol. 37, 991–993.

    Google Scholar 

  • Taggart, J.B., Prodohl, P.A. and Ferguson, A. (1995a) Genetic markers for Atlantic salmon (Salmo salar L.); single locus inheritance and joint segregation analysis of minisatellite (VNTR) DNA loci. Anim. Genet. 26, 13–20.

    Google Scholar 

  • Taggart, J.B., Verspoor, E., Galvin, P., Moran, P. and Ferguson, A. (1995b) A minisatellite DNA marker for discriminating between European and North American Atlantic salmon (Salmo salar L.). Can. J. Fish. Aquat. Sci. 52, 2305–2311.

    Google Scholar 

  • Tautz, D. (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17, 6463–6471.

    Google Scholar 

  • Tautz, D. and Renz, M. (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12, 4127–4138.

    Google Scholar 

  • Taylor, E.B. (1995) Genetic variation at minisatellite DNA loci among North Pacific populations of steelhead and rainbow trout (Oncorhynchus mykiss). Heredity 86, 354–363.

    Google Scholar 

  • Tessier, N., Bernatchez, L., Presa, P. and Angers, B. (1995) Gene diversity analysis of mitochondrial DNA, microsatellites and allozymes in landlocked Atlantic salmon. J. Fish Biol. 47 (Suppl. A), 156–163.

    Google Scholar 

  • Thompson, E.A. (1991) Estimation of relationships from genetic data. In Rao, C.R. and Chakraborty, R., eds. Handbook of Statistics, Vol. VIII. Amsterdam, Holland: Elsevier, pp. 255–269.

    Google Scholar 

  • Utter, F.M. (1991) Biochemical genetics and fishery management: an historical perspective. J. Fish Biol. 39 (Suppl. A), 1–20.

    Google Scholar 

  • Valdes, A.M., Slatkin, M. and Freimer, N.B. (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133, 737–749.

    Google Scholar 

  • Verspoor, E. (1986) Spatial correlations of transferrin allele frequencies in Atlantic salmon, Salmo salar, populations from North America. Can. J. Fish. Aquat. Sci. 43, 1074–1078.

    Google Scholar 

  • Waldbieser, G.C. (1995) PCR-based identification of AT-rich tri-and tetranucleotide repeat loci in an enriched plasmid library. Biotechniques 19, 742–744.

    Google Scholar 

  • Waples, R.S. (1989) A generalized method for estimating population size from temporal changes in allele frequency. Genetics 121, 379–391.

    Google Scholar 

  • Ward, R.D. and Grewe, P. (1994) Appraisal of molecular genetic techniques in fisheries. Rev. Fish Biol. Fish. 4, 300–325.

    Google Scholar 

  • Weber, J.L. and Wong, C. (1993) Mutation of human tandem repeats. Hum. Mol. Genet. 2, 1123–1128.

    Google Scholar 

  • Weir, B.S. and Cockerham, C.C. (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38, 1358–1370.

    Google Scholar 

  • Welsh, J. and McClelland, M. (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18, 7213–7218.

    Google Scholar 

  • Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A. and Tingey, S.V. (1990) DNA polymorphisms amplified by arbitrary primers are useful genetic markers. Nucleic Acids Res. 18, 6531–6535.

    Google Scholar 

  • Wong, Z., Wilson, V., Patel, I., Povey, S. and Jeffries, A.J. (1987) Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann. Hum. Genet. 51, 269–288.

    Google Scholar 

  • Wright, J.M. (1993) DNA fingerprinting in fishes. In Hochachka, P.W. and Mommsen, T., eds. Biochemistry and Molecular Biology of Fishes, Vol. 2. Amsterdam: Elsevier, pp. 58–91.

    Google Scholar 

  • Wright, J.M. and Bentzen, P. (1994) Microsatellites: genetic markers for the future. Rev. Fish. Biol. Fish. 4, 384–388.

    Google Scholar 

  • Wyman, A. and White, R. (1980) A highly polymorphic locus in human DNA. Proc. Natl Acad. Sci. USA 77, 6754–6758.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connell, M., Wright, J.M. Microsatellite DNA in fishes. Reviews in Fish Biology and Fisheries 7, 331–363 (1997). https://doi.org/10.1023/A:1018443912945

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018443912945

Keywords

Navigation