Skip to main content
Log in

Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Simplified models based on porous electrode theory are used to describe the discharge of rechargeable lithium batteries and derive analytic expressions for the specific capacity against discharge rate in terms of the relevant system parameters. The resulting theoretical expressions are useful for design and optimization purposes and can also be used as a tool for the identification of system limitations from experimental data. Three major cases are considered that are expected to hold for different classes of systems being developed in the lithium battery industry. The first example is a cell with solution phase diffusion limitations for the two extreme cases of a uniform and a completely nonuniform reaction rate distribution in the porous electrode. Next, a discharge dominated by solid phase diffusion limitations inside the insertion electrode particles is analysed. Last, we consider an ohmically-limited cell with no concentration gradients and having an insertion reaction whose open-circuit potential depends linearly on state of charge. The results are applied to a cell of the form Li|solid polymer electrolyte|LiyMn2O4 in order to illustrate their utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Selim and P. Bro, J. Electrochem. Soc. 118 (1971) 829.

    Google Scholar 

  2. D. Linden (ed.),`Handbook of Batteries', 2nd edn, McGraw-Hill, New York (1995).

    Google Scholar 

  3. G. W. Vinal, `Storage Batteries', 4th edn, J. Wiley & Sons, New York (1995), p.216.

    Google Scholar 

  4. M. Z. A. Munshi and B. B. Owens, Solid State lon. 38 (1990) 103.

    Google Scholar 

  5. M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc. 140 (1993) 1526.

    Google Scholar 

  6. T. F. Fuller, M. Doyle and J. Newman, ibid. 141 (1994) 1.

    Google Scholar 

  7. Idem, ibid. 141 (1994) 982.

  8. M. Doyle, T. F. Fuller and J. Newman, Electrochim. Acta 39 (1994) 2073.

    Google Scholar 

  9. M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz and J.-M. Tarascon, J. Electrochem. Soc. 143 (1996) 1890.

    Google Scholar 

  10. W. Tiedemann and J. Newman, ibid. 122 (1975) 1482.

    Google Scholar 

  11. J. Newman, ibid. 142 (1995) 97.

    Google Scholar 

  12. J. Newman and C. W. Tobias, ibid. 109 (1962) 1183.

    Google Scholar 

  13. R. Pollard and J. Newman, Electrochim. Acta 25 (1980) 315.

    Google Scholar 

  14. W. Stein, Naturwissenschaften 45 (1958) 459.

    Google Scholar 

  15. M. Doyle and J. Newman, J. Power Sources 54 (1995) 46.

    Google Scholar 

  16. S. Atlung, B. Zachau-Christiansen, K. West and T. Jacobsen, J. Electrochem. Soc. 131 (1984) 1200.

    Google Scholar 

  17. B. C. Knutz, K. West, B. Zachau-Christiansen and S. Atlung, J. Power Sources 43-44 (1993) 733.

    Google Scholar 

  18. J. Newman, `Electrochemical Systems', Prentice Hall, Englewood Cliffs, N. J. (1991).

    Google Scholar 

  19. D. A. G. Bruggeman, Ann. Phys. 24 (1935) 636.

    Google Scholar 

  20. H. S. Carslaw and J. C. Jaeger, `Conduction of Heat in Solids', Clarendon Press, Oxford (1959), p. 242.

    Google Scholar 

  21. F. M. Gray, `Solid Polymer Electrolytes', VCH, New York (1991).

    Google Scholar 

  22. A. Bouridah, F. Dalard, D. Deroo and M. B. Armand, J. Appl. Electrochem. 17 (1987) 625.

    Google Scholar 

  23. D. Guyomard and J. M. Tarascon, J. Electrochem. Soc. 139 (1992) 937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DOYLE , M., NEWMAN , J. Analysis of capacity–rate data for lithium batteries using simplified models of the discharge process. Journal of Applied Electrochemistry 27, 846–856 (1997). https://doi.org/10.1023/A:1018481030499

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018481030499

Keywords

Navigation