Skip to main content
Log in

Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminium-matrix composites containing thermally oxidized and unoxidized SiC particles featuring four average particle diameters ranging from 3 to 40 μm were produced by vacuum assisted high pressure infiltration. Their thermal expansion coefficient (CTE) was measured between 25 and 500°C. Oxidation of the SiC particles in air produces the formation at their surface of silicon oxide in quantities sufficient to bond the particles together, and confer strength to preforms. After infiltration with pure aluminium, the composites produced showed no sign of significant interfacial reaction. The CTE of the composite reinforced with unoxidized SiC particles featured an abrupt upward deviation upon heat-up near 200°C, and a second abrupt decrease near 400°C. The first transition is attributed to an inversion of stress across particle contact points. When composites are produced with oxidized SiC particles, these two transitions were removed, their CTE varying smoothly and gradually from the lower elastic bound to the upper elastic bound as temperature increases. With both composite types, the CTE decreased as the average particle size decreased. This work illustrates the benefits of three-dimensional reinforcement continuity for the production of low-CTE metal matrix composites, and shows a simple method for producing such composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. LLOYD, Inter. Mater. Rev. 39 (1994) 1.

    Article  CAS  Google Scholar 

  2. S. ELOMARI, R. BOUKHILI, M. D. SKIBO and J. MASOUNAVE, J. Mater. Sci. 30 (1995) 3037.

    Article  CAS  Google Scholar 

  3. R. J. ARSENAULT, Scripta Metall. 22 (1988) 767.

    Article  CAS  Google Scholar 

  4. Y. FLOM and R. J. ARSENAULT, J. Metals 38 (1986) 31.

    CAS  Google Scholar 

  5. F. A. GIROT, J. M. QUENISSET and R. NASLAIN, Comp. Sci. Tech. 30 (1987) 155.

    Article  CAS  Google Scholar 

  6. R. H. JONES, C. A. LAVENDER and M. T. SMITH, Scripta Metall. 21 (1987) 1565.

    Article  CAS  Google Scholar 

  7. H. J. HEINE, Founy Mgmt Tech. 116 (1988) 25.

    Google Scholar 

  8. V. C. NARDONE and J. R. STRIFE, Metall. Trans. 18 (1987) 109.

    Article  Google Scholar 

  9. K. S. RAVICHANDRAN and E. S. DWARKADASA, J. Metals 39 (1987) 28.

    CAS  Google Scholar 

  10. Duralcan composites casting guidelines, "Duralcan composites-mechanical and physical property, Wrought composites, SI Units", 1992, Duralcan USA, San Diego, CA, USA.

  11. M. J. KOCZAK, S. C. KHATRI, J. E. ALLISON and M. G. BADER, in “Fundamentals of metal matrix composites”, edited by S. Suresh, A. Mortensen and A. Needleman (Butterworth-Heinemann, Boston, 1993) p. 297.

    Chapter  Google Scholar 

  12. C. ZWEBEN, JOM 44 (1992) 15.

    Article  CAS  Google Scholar 

  13. D. K. BALCH, T. J. FITZGERALD, V. J. MICHAUD, A. MORTENSEN, Y.-L. SHEN, and S. SURESH, Metall. Trans. accepted.

  14. A. BRANDES, Smithells Metals Reference Book (6th edn. Butterworths, London, 1983) p. 14.

    Google Scholar 

  15. F. A. HUMMEL “Phase equilibria in ceramic systems” (Marcel Dekker, New York, 1984) p. 32.

    Google Scholar 

  16. N. EUSTATHOPOULOS and A. MORTENSEN, in “Fundamentals of metal matrix composites”, edited by S. Suresh, A. Mortensen and A. Needleman (Butterworth-Heinemann, Boston, 1993) p. 42.

    Chapter  Google Scholar 

  17. J. NARCISO, A. ALONSO, A. PAMIES, C. G. CORDOVILLA and A. LOUIS, Metall. Trans. 26A (1995) p. 983.

    Article  CAS  Google Scholar 

  18. R. J. VAIDYA and K. K. CHAWLA, Comp. Sci.Tech. 50 (1994) p. 13.

    Article  CAS  Google Scholar 

  19. E. SIDERIDIS, ibid. (1994) 301.

    Article  Google Scholar 

  20. T. H. HAHN, in “Metal matrix composites: mechanisms and properties”, edited by R. K. Everett and R. J. Arsenault (Academic Press, Boston, 1991) p. 329.

    Google Scholar 

  21. R. A. SCHAPERY, J. Comp. Mater. 2 (1968) 380.

    Article  Google Scholar 

  22. M. OLSSON, A. E. GIANNAKOPOULOS, and S. SURESH, J. Mech. Phys. Solids 43 (1995) 1639.

    Article  CAS  Google Scholar 

  23. Z. LI and R. C. BRADT, Int. J. High Technology Ceramics 4 (1988) 1.

    Article  Google Scholar 

  24. Z. R. XU, K. K. CHAWLA, R. MITRA and M. E. FINE, Scripta Metall. Mater. 31 (1994) 1525.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ELOMARI, S., BOUKHILI, R., SAN MARCHI, C. et al. Thermal expansion responses of pressure infiltrated SiC/Al metal-matrix composites. Journal of Materials Science 32, 2131–2140 (1997). https://doi.org/10.1023/A:1018535108269

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018535108269

Keywords

Navigation